(O.stolz公式)设数列{xn},{yn}满足: (1)n∈N+,yn<yn+1, (2) (3)(a可为有限数,+∞,-∞),则

admin2022-10-31  36

问题 (O.stolz公式)设数列{xn},{yn}满足:
    (1)n∈N+,yn<yn+1
    (2)
    (3)(a可为有限数,+∞,-∞),则

选项

答案(1)设a为有限数,由数列极限定义及(3)式,对[*]ε>0,[*]N∈N+,使得当n>N时有a-ε<[*]<a+ε.于是得到一组不等式: (yN+1-yN)(a-ε)<xN+1-xN<(yN+1-yN)(a+ε), (yN+2-yN+1)(a-ε)<xN+2-xN+1<(yN+2-yN+1)(a+ε), ………… (yn-yn-1)(a-ε)<xn-xn-1<(yn-yn-1)(a+ε), 将不等式组中各不等式相加,得 (yn-yN)(a-ε)<xn-xN<(yn-yN)(a+ε), 即 [*] 对取定的ε>0及相应的n,当n→∞时yn→+∞,故a-ε≤[*]≤a+ε.由ε的任意性知, [*] (2)设a=+∞:则对[*]M>0,[*]N∈N+.使得当n>N时,[*]>M.类似于(1)的证明,可得一不等式组。经相同步骤后可得 [*]xn-xN>M(yn-yN), 移项并除以yn,得[*],取n→∞,由[*],由M的任意性,得 [*] 类似可证a=-∞的情形.

解析
转载请注明原文地址:https://kaotiyun.com/show/MSgD777K
0

最新回复(0)