首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n阶实矩阵,证明:(1)r(ATA)=r(A);(2)ATAX=ATb一定有解.
设A是m×n阶实矩阵,证明:(1)r(ATA)=r(A);(2)ATAX=ATb一定有解.
admin
2016-09-19
51
问题
设A是m×n阶实矩阵,证明:(1)r(A
T
A)=r(A);(2)A
T
AX=A
T
b一定有解.
选项
答案
(1)设r(A)=r
1
,r(A
T
A)=r
2
,由于AX=0的解都满足(A
T
A)X=A
T
(AX)=0,故AX=0的基础解系(含n-r
1
个无关解)含于A
T
AX=0的某个基础解系(含n-r
2
个无关解)之中,所以n-r
1
≤n-r
2
,故有r
2
≤r
1
,即 r(A
T
A)≤r(A). ① 又当A
T
AX=0时(X为实向量),必有X
T
A
T
AX=0,即(AX)
T
AX=0,设AX=[b
1
,b
2
,…,b
m
]
T
,则(AX)
T
(AX)=[*]=0,必有b
1
=b
2
=…=b
m
=0,即AX=0,故方程组A
T
AX=0的解必满足方程组AX=0,从而有 n-r(A
T
A)≤n-r(A), r(A)≤r(A
T
A). ② 由式①,②得证r(A)=r(A
T
A). (2)A
T
AX=A
T
b有解<=>r(A
T
A)-=r(A
T
A|A
T
b). 由(1)知r(A)=r(A
T
)=r(A
T
A),将A
T
,A
T
A=B以列分块,且B=A
T
A的每个列向量均可由A
T
的列向量线性表出,故A
T
和B=A
T
A的列向量组是等价向量组,A
T
b是A
T
的列向量组的某个线性组合,从而r(A
T
)=r(A
T
|A
T
b)=r(A
T
A|A
T
b),故 r(A
T
A)=r(A
T
)=r(A
T
|A
T
b)=r(A
T
A|A
T
b), 故(A
T
A)X=A
T
b有解.
解析
转载请注明原文地址:https://kaotiyun.com/show/MVT4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 D
A、 B、 C、 D、 A
[*]
将13个分别写有A、A、A、C、E、H、I、I、M、M、N、T、T的卡片随意地排成一行,求恰好排单词“MATHEMATICIAN”的概率.
设A是n×m矩阵,B是m×n矩阵,其中n
加工一个产品要经过三道工序,第一、二、三道工序不出废品的概率分别为0.9、0.95、0.8,若假定各工序是否出废品是独立的,求经过三道工序生产出的是废品的概率.
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:(1)|x-a|20与x≤20;(3)x>20与x20与x≤22;(5)“20件产品全是合格品”与“20件产品中恰有一件是废品”;(6)“20件产品全是合
设向量α=α1+α2+…+αs(s>1),而β1=α-α1,β2=α-α2,…,βs=α-αs,则().
设E,F是两个事件,判断下列各结论是否正确,如果正确,说明其理由;如果不正确,给出其反例.(1)P(E∩F)≤P(E|F);(2)P(E∩F|F)=P(E|F).
设线性方程组(I)与方程x1+2x2+x3=a-l(Ⅱ)有公共解,求a的值及所有公共解.
随机试题
公务员应当退休的条件。
设区域D={(x,y)|0≤x≤1,0≤y≤1},则=______.
患者,女,41岁。1个月前因弯腰搬杂物引起腰部剧痛,3日后加重,并出现右小腿外侧痛,足背麻木,不能平卧,弯腰、咳嗽、用力排便时加重。查体:脊柱侧弯,椎旁叩痛并向右臀部、右腿放射,右侧直腿抬高试验阳性,加强试验弱阳性。膝腱与跟腱反射正常,肌力正常,足背与小腿
严甲能否直接向人民法院起诉,有何依据?严甲的诉讼请求是否合理?
项目后评价工作一般是由()负责委托组织完成的。
下列属于资产负债表“流动资产”项目中的是( )。
上海证券交易所和深圳证券交易所的证券账户由()集中统一管理。
招标文件发出之日到投标文件截止之日,不得少于()。
简述当代儿童发展观的基本内容。
对考生文件夹下Word.docx文档中的文字进行编辑、排版和保存,具体要求如下。【文档开始】
最新回复
(
0
)