首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n阶实矩阵,证明:(1)r(ATA)=r(A);(2)ATAX=ATb一定有解.
设A是m×n阶实矩阵,证明:(1)r(ATA)=r(A);(2)ATAX=ATb一定有解.
admin
2016-09-19
67
问题
设A是m×n阶实矩阵,证明:(1)r(A
T
A)=r(A);(2)A
T
AX=A
T
b一定有解.
选项
答案
(1)设r(A)=r
1
,r(A
T
A)=r
2
,由于AX=0的解都满足(A
T
A)X=A
T
(AX)=0,故AX=0的基础解系(含n-r
1
个无关解)含于A
T
AX=0的某个基础解系(含n-r
2
个无关解)之中,所以n-r
1
≤n-r
2
,故有r
2
≤r
1
,即 r(A
T
A)≤r(A). ① 又当A
T
AX=0时(X为实向量),必有X
T
A
T
AX=0,即(AX)
T
AX=0,设AX=[b
1
,b
2
,…,b
m
]
T
,则(AX)
T
(AX)=[*]=0,必有b
1
=b
2
=…=b
m
=0,即AX=0,故方程组A
T
AX=0的解必满足方程组AX=0,从而有 n-r(A
T
A)≤n-r(A), r(A)≤r(A
T
A). ② 由式①,②得证r(A)=r(A
T
A). (2)A
T
AX=A
T
b有解<=>r(A
T
A)-=r(A
T
A|A
T
b). 由(1)知r(A)=r(A
T
)=r(A
T
A),将A
T
,A
T
A=B以列分块,且B=A
T
A的每个列向量均可由A
T
的列向量线性表出,故A
T
和B=A
T
A的列向量组是等价向量组,A
T
b是A
T
的列向量组的某个线性组合,从而r(A
T
)=r(A
T
|A
T
b)=r(A
T
A|A
T
b),故 r(A
T
A)=r(A
T
)=r(A
T
|A
T
b)=r(A
T
A|A
T
b), 故(A
T
A)X=A
T
b有解.
解析
转载请注明原文地址:https://kaotiyun.com/show/MVT4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 B
将13个分别写有A、A、A、C、E、H、I、I、M、M、N、T、T的卡片随意地排成一行,求恰好排单词“MATHEMATICIAN”的概率.
一批产品共有a十b个,其中a个正品,b个次品.今采用不放回抽样n次,问抽到的n个产品里恰有k个是正品的概率是多少?
掷两枚均匀的骰子,已知它们出现的点数各不相同,求其中有一个点数为4的概率.
由概率的公理化定义证明:(1)P()=1-P(A);(2)P(A-B)=P(A)-P(AB).特别地,若A⊃B,则P(A-B)=P(A)-P(B).且P(A)≥P(B);(3)0≤P(A)≤1;(4)P(A∪B)
设f(x,y)在区域D上连续,(xo,yo)是D的一个内点,Dr是以(xo,yo)为中心以r为半径的闭圆盘,试求极限
(1)微分方程的阶数是指__________.(2)n阶微分方程的初值条件的一般形式为______________.(3)函数y1(x)与y2(x)在区间I上线性无关的充要条件是___________.(4)函数y=eλx是常系数线性微分方程yn+P
设=i+j+k,b=i-2j+k,c=-2i+j+2k,试用单位向量ea,eb,ec表示向量i,j,k.
一个均匀的四面体,其第一面染红色,第二面染白色,第三面染黑色,而第四面染红、白、黑三种颜色,以A、B、C分别记投掷一次四面体,底面出现红、白、黑的三个事件,判断A、B、C是否两两独立,是否相互独立.
某城市共有N辆汽车,车牌号码从1到N。有一人将他所遇到的该城市的n辆汽车的车牌号码(可能有重复的号码)全部抄下来,假设每辆汽车被遇到的机会相同,求抄到的最大号码正好是k(1≤k≤N)的概率。
随机试题
人员录用必须按照岗位的特性,根据工作的需要来进行。同时,还必须根据每个人的能力及特点、个性的差异来安排相应的职位。这是指人员录用原则中的【】
男,24岁,民工,急起腹泻,水样便、次数频、量多,无明显发热与腹痛,8月18日就诊,就诊时神志清楚查体:体温36.8℃,血压78/57mmHg,有明显脱水征,大便镜检:RBC2~3/HP,WBC2~5/HP,悬滴见穿梭状、快速运动的细菌。初步诊断霍乱,
常用普通医用X线胶片属于
消化性溃疡发病因素中,下列各项中最重要的是
A.硅质B.黏液C.草酸钙结晶D.碳酸钙结晶E.菊糖10%α—萘酚乙醇溶液再加硫酸用于检查()。
多层砌体房屋的地震破坏部位主要是()。
以下是某教师对《关雎》这节课导入部分的设计,阅读并回答问题。课前播放歌曲《关雎》营造气氛。导语:“罗江是一个富有诗情画意的地方。古代有著名文学家李调元,现在有诗歌博物馆,春暖花开的时候还要举办诗歌节。可见,罗江人民一直在追求一种诗意的栖居。所以,也只有
经济全球化,密切了各国之间的联系,促进了国际合作。经济全球化在促进各国经济和文化交流的同时,也使得原来区域性的传染病成为全球性灾难的风险大大提高。这说明()。
Childrenarealwayscuriouseverythingtheysee.
Thesearenoteasytimesforbooksellers.Borders,abigAmericanone,fireditsbossinJanuaryandhasclosedstores,butiss
最新回复
(
0
)