首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n阶实矩阵,证明:(1)r(ATA)=r(A);(2)ATAX=ATb一定有解.
设A是m×n阶实矩阵,证明:(1)r(ATA)=r(A);(2)ATAX=ATb一定有解.
admin
2016-09-19
75
问题
设A是m×n阶实矩阵,证明:(1)r(A
T
A)=r(A);(2)A
T
AX=A
T
b一定有解.
选项
答案
(1)设r(A)=r
1
,r(A
T
A)=r
2
,由于AX=0的解都满足(A
T
A)X=A
T
(AX)=0,故AX=0的基础解系(含n-r
1
个无关解)含于A
T
AX=0的某个基础解系(含n-r
2
个无关解)之中,所以n-r
1
≤n-r
2
,故有r
2
≤r
1
,即 r(A
T
A)≤r(A). ① 又当A
T
AX=0时(X为实向量),必有X
T
A
T
AX=0,即(AX)
T
AX=0,设AX=[b
1
,b
2
,…,b
m
]
T
,则(AX)
T
(AX)=[*]=0,必有b
1
=b
2
=…=b
m
=0,即AX=0,故方程组A
T
AX=0的解必满足方程组AX=0,从而有 n-r(A
T
A)≤n-r(A), r(A)≤r(A
T
A). ② 由式①,②得证r(A)=r(A
T
A). (2)A
T
AX=A
T
b有解<=>r(A
T
A)-=r(A
T
A|A
T
b). 由(1)知r(A)=r(A
T
)=r(A
T
A),将A
T
,A
T
A=B以列分块,且B=A
T
A的每个列向量均可由A
T
的列向量线性表出,故A
T
和B=A
T
A的列向量组是等价向量组,A
T
b是A
T
的列向量组的某个线性组合,从而r(A
T
)=r(A
T
|A
T
b)=r(A
T
A|A
T
b),故 r(A
T
A)=r(A
T
)=r(A
T
|A
T
b)=r(A
T
A|A
T
b), 故(A
T
A)X=A
T
b有解.
解析
转载请注明原文地址:https://kaotiyun.com/show/MVT4777K
0
考研数学三
相关试题推荐
[*]
[*]
A、 B、 C、 D、 C
掷一枚骰子,观察其出现的点数,A表示“出现奇数点”,B表示“出现的点数小于5”,C表示“出现的点数是小于5的偶数”,用集合列举法表示下列事件:Ω,A,B,C,A+B,A-B,B-A,AB,AC,+B.
掷一枚骰子,观察其出现的点数,A表示“出现奇数点”,B表示“出现的点数小于5”,C表示“出现的点数是小于5的偶数”,用集合列举法表示下列事件:Ω,A,B,C,A+B,A-B,B-A,AB,AC,+B.
设A,B是同阶正定矩阵,则下列命题错误的是().
证明下列关系式:A∪B=A∪(B-A)=(A-B)∪(B-A)∪(A∩B).
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
求下列微分方程的通解:(1)y〞=xex;(2)(1+x2)y〞=1;(3)y〞+yˊ=x2;(4)y〞=1+yˊ2;(5)x2y〞=yˊ2+2xyˊ;(6)(1-y)y〞+2yˊ2=0;(7);(8)y〞+yˊ2=
设A与B均为n,阶矩阵,且A与B合同,则().
随机试题
简述危害公共安全罪的共同特征。
“南施北宋”之“北宋”是指【】
1951年被北京市人民政府授予“人民艺术家”的称号的作家是()
账簿与账户的关系是形式与内容的关系。()
()是风险管理的最基本要求。
属于商业区银行中间业务的是()。
业绩股票激励模式只对业绩目标进行考核,而不要求股价的上涨,因而比较适合业绩稳定的上市公司。()
成为中华人民共和国公民的条件是()。
长沙市芙蓉区法院受理了一起民事诉讼案件,后发现自己对本案无管辖权,于是将该案移送开福区法院,开福区法院则认为对该案有管辖权的应是岳麓区法院。在此种情况下,开福区法院应当如何处理?
某集团三个分公司共同举行技能大赛,其中成绩靠前的X人获奖。如获奖人数最多的分公司获奖的人数为Y,问以下哪个图形能反映Y的上、下限分别与X的关系?()
最新回复
(
0
)