首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设λ1、λn分别为,2阶实对称矩阵A的最小和最大特征值,X1、Xn分别为对应于λ1和λn的特征向量,记 f(X)=,X∈Rn,X≠0 证明:λ1≤f(X)≤λn,maxf(X)=λn=f(Xn).
设λ1、λn分别为,2阶实对称矩阵A的最小和最大特征值,X1、Xn分别为对应于λ1和λn的特征向量,记 f(X)=,X∈Rn,X≠0 证明:λ1≤f(X)≤λn,maxf(X)=λn=f(Xn).
admin
2018-04-18
33
问题
设λ
1
、λ
n
分别为,2阶实对称矩阵A的最小和最大特征值,X
1
、X
n
分别为对应于λ
1
和λ
n
的特征向量,记
f(X)=
,X∈R
n
,X≠0
证明:λ
1
≤f(X)≤λ
n
,maxf(X)=λ
n
=f(X
n
).
选项
答案
根据题意得,必存在正交变换X=PY(P为正交矩阵,Y=(y
1
,…,y
n
)
T
),使得X
T
AX=[*]λ
1
y
1
2
+…+λ
n
y
n
2
≤λ
n
(y
1
2
+…+y
n
2
)=λ
n
‖Y‖
2
由于正交变换不改变向量长度,故有‖Y‖
2
=‖X‖
2
=X
T
X,上式即X
T
AX≤λ
n
X
T
X,当X≠0时,X
T
X>0,即得f(X)=[*]≤λ
n
,又f(X
n
)=[*]=λ
n
,于是得maxf(X)=λ
n
.
解析
转载请注明原文地址:https://kaotiyun.com/show/MVk4777K
0
考研数学二
相关试题推荐
设α1,α2,α3是四元非齐次方程组Ax=b的三个解向量,且秩r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=().
设f(x)在(-∞,+∞)内可微,证明:在f(x)的任何两个零点之间必有f(x)+fˊ(x)的一个零点.
设f(x,y)在点(0,0)的某邻域内连续,且满足则f(x,y)在(0,0)处().
二元函数f(x,y)在点(x0,y0)处两个偏导数f’(x0,y0),fx’(x0,y0)存在是f(x,Y)在该点连续的
设齐次线性方程组其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、无穷多组解?在有无穷多解时,求出全部解,并用基础解系表示全部解.
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其α2,α3,α4线性无关,α1=2α2-α3,如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
设z=f(2x-y,ysinx),其中f具有连续的二阶偏导数,求
(2001年试题,四)求极限记此极限为f(x),求函数f(x)的间断点并指出其类型.
(2004年试题,一)微分方程(y+x2)dx一2xdy=0满足的特解为_________.
(2004年试题,三(4))曲线与直线x=0,x=t(t>0)及y=0围成一曲边梯形.该曲边梯形绕x轴旋转一周得一旋转体,其体积为V(t),侧面积为S(t),在x=t处的底面积为F(t).(I)求的值;(Ⅱ)计算极限
随机试题
Researchers,writinginthejournalHeart,pooleddatafrom23studiesandfoundthatsocialisolationorfeelingsofloneliness
江流宛转绕芳甸,月照花林皆似霰。
应急反应时血中肾上腺素浓度增高引起心血管和呼吸等活动加强,这一调节属于
引起病毒性心肌炎的病毒最常见的是()
A.IHEB.RISC.PASD.DICOME.LIS医疗机构信息集成规范的缩写是
排放有毒有害气体的建设项目应布置在生活居住区的()。
当前开发、选择、应用会计核算软件的墓本依据是()。
在Java语言的所有方法中,比较特殊的方法是抽象方法,它只有方法头,没有【】。
无符号二进制整数1011010转换成十进制数是
A、Yes,itis.B、Itisafineday.C、Itiscloudy.D、I’msorrytohearit.A
最新回复
(
0
)