首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设λ1、λn分别为,2阶实对称矩阵A的最小和最大特征值,X1、Xn分别为对应于λ1和λn的特征向量,记 f(X)=,X∈Rn,X≠0 证明:λ1≤f(X)≤λn,maxf(X)=λn=f(Xn).
设λ1、λn分别为,2阶实对称矩阵A的最小和最大特征值,X1、Xn分别为对应于λ1和λn的特征向量,记 f(X)=,X∈Rn,X≠0 证明:λ1≤f(X)≤λn,maxf(X)=λn=f(Xn).
admin
2018-04-18
62
问题
设λ
1
、λ
n
分别为,2阶实对称矩阵A的最小和最大特征值,X
1
、X
n
分别为对应于λ
1
和λ
n
的特征向量,记
f(X)=
,X∈R
n
,X≠0
证明:λ
1
≤f(X)≤λ
n
,maxf(X)=λ
n
=f(X
n
).
选项
答案
根据题意得,必存在正交变换X=PY(P为正交矩阵,Y=(y
1
,…,y
n
)
T
),使得X
T
AX=[*]λ
1
y
1
2
+…+λ
n
y
n
2
≤λ
n
(y
1
2
+…+y
n
2
)=λ
n
‖Y‖
2
由于正交变换不改变向量长度,故有‖Y‖
2
=‖X‖
2
=X
T
X,上式即X
T
AX≤λ
n
X
T
X,当X≠0时,X
T
X>0,即得f(X)=[*]≤λ
n
,又f(X
n
)=[*]=λ
n
,于是得maxf(X)=λ
n
.
解析
转载请注明原文地址:https://kaotiyun.com/show/MVk4777K
0
考研数学二
相关试题推荐
[*]
[*]
若f(x)不变号,且曲线y=f(x)在点(1,1)处的曲率圆为x2+y2=2,则函数f(x)在区间(1,2)内
设F(x)是f(x)在区间(a,b)内的一个原函数,则F(x)+f(x)在区间(a,b)内().
设函数f(x)在[a,b]上有定义,在开区间(a,b)内可导,则().
已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式f(1+sinx)-3f(1-sinx)=8x+a(x),其中a(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方程.
设z=f(2x-y,ysinx),其中f具有连续的二阶偏导数,求
(2012试题,三)(1)证明方程xn+xn-1+…+x=1(n为大于1的整数),在区间内有且仅有一个实根;(2)记(1)中的实根为xn,证明存在,并求此极限.
(2004年试题,三(4))曲线与直线x=0,x=t(t>0)及y=0围成一曲边梯形.该曲边梯形绕x轴旋转一周得一旋转体,其体积为V(t),侧面积为S(t),在x=t处的底面积为F(t).(I)求的值;(Ⅱ)计算极限
过点(0,1)作曲线L:y=lnx的切线,切点为A,又L与x轴交于B点,区域D由L与直线AB围成,求区域D的面积及D绕x轴旋转一周所得旋转体的体积.
随机试题
A.光面内质网大量增生B.前角蛋白细丝堆积C.增大的载有蛋白质的溶酶体D.线粒体肿胀、嵴消失近曲小管上皮细胞内玻璃样小滴
小脑幕切迹疝发生时,下列哪些结构可能受损
某项目部承建一生活垃圾填埋场工程,规模为20万t,场地位于城乡结合部。填埋场防水层为土工合成材料膨润土垫(GCL),1层防渗层为高密度聚乙烯膜,项目部通过招标形式选择了高密度聚乙烯膜供应商及专业焊接队伍。工程施工过程中发生以下事件:事件一:原拟堆
过程的组成环节不包括()。
阅读下列材料,回答问题。张老师在检测“东南亚”,一课时,编制了两道单项选择题。问题:将上面存在问题的题目选项加以改编使其符合要求。
公安机关是专门维护社会治安的机关。( )
社会主义法律得以实现的主要方式是:
下列与我国四大盆地有关的说法不正确的是:
清代出现了一些反对理学的进步思想家,其突出代表是著有《四书正误》的_________和__________。
Howcouldanybodydislikethenotionoffairness?Everythingisbetterwhenitisfair:ashare,afight,amaiden,oragame.E
最新回复
(
0
)