首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X与Y相互独立且分别服从正态分布N(μ,σ2)与N(μ,2σ2),其中σ是未知参数凡σ>0.记Z=X-Y. (Ⅰ)求Z的概率密度f(z,σ2); (Ⅱ)设Z1,Z2,…,Zn为来自总体Z的简单随机样本,求σ2的最大似然估计量;
设随机变量X与Y相互独立且分别服从正态分布N(μ,σ2)与N(μ,2σ2),其中σ是未知参数凡σ>0.记Z=X-Y. (Ⅰ)求Z的概率密度f(z,σ2); (Ⅱ)设Z1,Z2,…,Zn为来自总体Z的简单随机样本,求σ2的最大似然估计量;
admin
2018-07-30
63
问题
设随机变量X与Y相互独立且分别服从正态分布N(μ,σ
2
)与N(μ,2σ
2
),其中σ是未知参数凡σ>0.记Z=X-Y.
(Ⅰ)求Z的概率密度f(z,σ
2
);
(Ⅱ)设Z
1
,Z
2
,…,Z
n
为来自总体Z的简单随机样本,求σ
2
的最大似然估计量
;
(Ⅲ)证明
为σ
2
的无偏估计量.
选项
答案
(Ⅰ)∵X与Y独立,可见Z=X-Y服从正态分布,而EZ=E(X-Y)=EX-EY=μ-μ=0, DZ=D(X-Y)=DX+DY=σ
2
+2σ
2
=3σ
2
∴Z~N(0,3σ
2
) 故f(z;σ
2
)=[*],-∞<z<+∞ (Ⅱ)似然函数为 [*] 令[*]=0,得σ
2
=[*],故[*] (Ⅲ)由EZ=0,DZ=3σ
2
,∴E(Z
2
)=DZ+(EZ)
2
=3σ
2
∴[*] 故[*]为σ
2
的无偏估计.
解析
转载请注明原文地址:https://kaotiyun.com/show/Mfg4777K
0
考研数学一
相关试题推荐
设随机变量X,Y相互独立且都服从标准正态分布,令U=X2+Y2.求:(1)f(u);(2)P{U>D(U)|U>E(U)}.
设(X,Y)~f(x,y)=(1)判断X,Y是否独立,说明理由;(2)判断X,Y是否不相关,说明理由;(3)求Z=X+Y的密度.
设二维随机变量(X,Y)的联合密度为f(x,y)=.(1)求c;(2)求X,Y的边缘密度,问X,Y是否独立?(3)求Z=max(X,Y)的密度.
设起点站上车人数X服从参数为λ(λ>0)的泊松分布,每位乘客中途下车的概率为p(0<p<1),且中途下车与否相互独立,以Y表示中途下车人数.(1)求在发车时有n个乘客的情况下,中途有m个乘客下车的概率;(2)求(X,Y)的概率分布.
一批产品有10个正品2个次品,任意抽取两次,每次取一个,抽取后不放回,求第二次抽取次品的概率.
10件产品中4件为次品,6件为正品,现抽取2件产品.(1)求第一件为正品,第二件为次品的概率;(2)在第一件为正品的情况下,求第二件为次品的概率;(3)逐个抽取,求第二件为正品的概率.
设二次型f=2x12+2x22+ax32+2x1x2+2x1x3+2x2x3经过正交变换X=QY化为标准形f=y12+y22+4y32,求参数a,b及正交矩阵Q.
设Y~,求矩阵A可对角化的概率.
确定常数a,b,c,使得=c.
随机试题
目前在WTO存在的单独关税区有()
Thisbirdisreallylovely,andI’veneverseen________one.
下列选项中不属于捕食的一项是()
土石坝施工中,当黏性土料含水量偏低时,主要应在()加水。
路基填土不得使用()等。
上个世纪60年代初以来,新加坡的人均预期寿命不断上升,到本世纪已超过日本,成为世界之最。与此同时,和一切发达国家一样,由于饮食中的高脂肪含量,新加坡人的心血管疾病发病率也逐年上升。从上述判定,最可能推出以下哪项结论?()
疼:哭
关于SDR,下列说法正确的是()。[南京大学2012金融硕士]
在"用户表"中有4个字段:用户名(文本型,主关键字),密码(文本型),登录次数(数字型),最近登录时间(日期/时间型)。在"登录界面"的窗体中有两个名为tUser和tPassword的文本框,一个登录按钮 Command0。进入登录界面后,用户输入用户名和
Somepeople’searsproducewaxlikebusylittlebees.Thiscanbeaproblemeventhoughearwax(耳垢)appearsto【S1】______animporta
最新回复
(
0
)