首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X与Y相互独立且分别服从正态分布N(μ,σ2)与N(μ,2σ2),其中σ是未知参数凡σ>0.记Z=X-Y. (Ⅰ)求Z的概率密度f(z,σ2); (Ⅱ)设Z1,Z2,…,Zn为来自总体Z的简单随机样本,求σ2的最大似然估计量;
设随机变量X与Y相互独立且分别服从正态分布N(μ,σ2)与N(μ,2σ2),其中σ是未知参数凡σ>0.记Z=X-Y. (Ⅰ)求Z的概率密度f(z,σ2); (Ⅱ)设Z1,Z2,…,Zn为来自总体Z的简单随机样本,求σ2的最大似然估计量;
admin
2018-07-30
54
问题
设随机变量X与Y相互独立且分别服从正态分布N(μ,σ
2
)与N(μ,2σ
2
),其中σ是未知参数凡σ>0.记Z=X-Y.
(Ⅰ)求Z的概率密度f(z,σ
2
);
(Ⅱ)设Z
1
,Z
2
,…,Z
n
为来自总体Z的简单随机样本,求σ
2
的最大似然估计量
;
(Ⅲ)证明
为σ
2
的无偏估计量.
选项
答案
(Ⅰ)∵X与Y独立,可见Z=X-Y服从正态分布,而EZ=E(X-Y)=EX-EY=μ-μ=0, DZ=D(X-Y)=DX+DY=σ
2
+2σ
2
=3σ
2
∴Z~N(0,3σ
2
) 故f(z;σ
2
)=[*],-∞<z<+∞ (Ⅱ)似然函数为 [*] 令[*]=0,得σ
2
=[*],故[*] (Ⅲ)由EZ=0,DZ=3σ
2
,∴E(Z
2
)=DZ+(EZ)
2
=3σ
2
∴[*] 故[*]为σ
2
的无偏估计.
解析
转载请注明原文地址:https://kaotiyun.com/show/Mfg4777K
0
考研数学一
相关试题推荐
设(X,Y)的联合密度函数为f(x,y)=.(1)求a;(2)求X,Y的边缘密度,并判断其独立性;(3)求fX|Y(x|y).
随机变量(X,Y)的联合密度函数为f(x,y)=.(1)求常数A;(2)求(X,Y)落在区域x2+y2≤内的概率.
设起点站上车人数X服从参数为λ(λ>0)的泊松分布,每位乘客中途下车的概率为p(0<p<1),且中途下车与否相互独立,以Y表示中途下车人数.(1)求在发车时有n个乘客的情况下,中途有m个乘客下车的概率;(2)求(X,Y)的概率分布.
设(X,Y)服从二维正态分布,则下列说法不正确的是().
设二次型f=2x12+2x22+ax32+2x1x2+2x1x3+2x2x3经过正交变换X=QY化为标准形f=y12+y22+4y32,求参数a,b及正交矩阵Q.
设A=(1)求常数a,b,c;(2)判断A是否可对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.若不可对角化,说明理由.
设随机变量X的概率密度为fX(x)=,求Y=eX的概率密度fY(y).
确定常数a,b,c,使得=c.
甲、乙两船驶向不能同时停靠两条船的码头,它们一天到达时间是等可能的,如果甲停靠,则停靠的时间为1小时,若乙停靠,则停靠的时间为2小时,求它们不需要等候的概率.
随机试题
毛泽东对实事求是的含义作了马克思主义界定的文章是()
在正常情况下,SaO2为0.90时,PO2的值约为
患儿,女,6岁,突然出现小便频数短赤,尿道灼热疼痛,尿液淋沥浑浊,小腹坠胀,腰部酸痛,伴有发热,烦躁口渴,甚有恶心呕吐,舌质红,苔黄腻,脉数有力。治疗首选方剂()
同年同月同日出生的刘某、项大和项二是某市D区楚汉中学的同班同学,刘某居住在该市A区,项大和项二都居住在B区,在一次班级活动中,三人都报名参加攀登C区的爬山比赛。在爬山过程中,项大和项二为争第一,故意将刘某推倒,导致刘某头部受伤。活动组织者立即将刘某送往医院
关于水泥混凝土面层用养护剂的说法正确的是()。
采用内部转移价格主要是为了考核、评价责任中心的业绩,并不强求各责任中心的转移价格完全一致,可分别采用对不同责任中心最有利的价格为计价的依据。()
突然,从窗外传来一阵急促的“的嘟”——“的嘟”——声,这声音犹如一块巨石落入平静的水面,教室里顿时喧闹起来。紧接着,像有谁下了一道命令:“向左看齐”,所有的学生都向左边看去。这是怎么回事,还没等老师喊出话来,坐在靠窗边的同学已经站起来,趴在窗台上向外张望,
公诉案件实行国家追诉制度,被害人不是原告人,但是他对人民检察院作出的不起诉决定有()。
Generallyspeaking,aBritishiswidelyregardedasaquiet,shyandconservativepersonwhois【B1】______onlyamongthosewith
Afterwardstherewasjustafeelingoflet-down.
最新回复
(
0
)