首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组 其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解,有无穷多解?当有无穷多解时,求出其全部解,并用基础解系表示全部解.
设齐次线性方程组 其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解,有无穷多解?当有无穷多解时,求出其全部解,并用基础解系表示全部解.
admin
2016-10-20
80
问题
设齐次线性方程组
其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解,有无穷多解?当有无穷多解时,求出其全部解,并用基础解系表示全部解.
选项
答案
对系数矩阵作初等行变换,把第1行的-1倍分别加至第2行到第n行,有 [*] (Ⅰ)如果a=b,方程组的同解方程组是x
1
+x
2
+…+x
n
=0. 由于n-r(A)=n-1,取自由变量为x
2
,x
3
,…,x
n
,得到基础解系为: α
1
=(-1,1,0,…,0)
T
,α
2
=(-1,0,1,…,0)
T
,…,α
n-1
=(-1,0,0,…,1)
T
. 方程组通解是:k
1
α
1
+k
2
α
2
+…+k
n-1
α
n-1
,其中k
1
,k
2
,…,k
n-1
为任意常数. (Ⅱ)如果a≠b,对系数矩阵作初等行变换,有 [*] 若a≠(1-n)b,则秩r(A)=n,此时齐次方程组只有零解. 若a=(1-n)b,则秩r(A)=n-1.取x
1
为自由变量,则基础解系为α=(1,1,…,1)
T
,于是方程组的通解是:kα,其中k为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/MgT4777K
0
考研数学三
相关试题推荐
一辆飞机场的交通车载有25名乘客,途经9个站,每位乘客都等可能在9个站中任意一站下车,交通车只在有乘客下车时才停车,求下列各事件的概率:(1)交通车在第i站停车;(2)交通车在第i站和第j站至少有一站停车;(3)交通车在第i站
加工一个产品要经过三道工序,第一、二、三道工序不出废品的概率分别为0.9、0.95、0.8,若假定各工序是否出废品是独立的,求经过三道工序生产出的是废品的概率.
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
掷两枚均匀的骰子,已知它们出现的点数各不相同,求其中有一个点数为4的概率.
α1,α2是向量组(Ⅱ)的一个极大无关组,(Ⅱ)的秩为2,故(Ⅰ)的秩为2.由于(Ⅰ)线性相关,从而行列式|β1,β2,β3|=0,由此解得a=3b;又β3可由向量组(Ⅱ)线性表示,从而β3可由α1,α2线性表示,所以向量组α1,α2,β3线性相关,于是行
设A与B均为n,阶矩阵,且A与B合同,则().
设函数f(x)=(x2-3x+2)sinx,则方程fˊ(x)=0在(0,π)内根的个数为()。
设∑与а∑满足斯托斯克斯定理中的条件,函数f(x,y,z)与g(x,y,z)具有连续二阶偏导数,f▽g表示向量▽g数乘f,即f▽g=f(gx,gy,gz)=(fgx,fgy,fgz)证明:
求下列微分方程的通解:(1)y〞=xex;(2)(1+x2)y〞=1;(3)y〞+yˊ=x2;(4)y〞=1+yˊ2;(5)x2y〞=yˊ2+2xyˊ;(6)(1-y)y〞+2yˊ2=0;(7);(8)y〞+yˊ2=
设函数f(x)住[0,+∞)上连续,单调不减且f(0)≥0.试证函数在[0,+∞)上连续且单调不减(其中n>0).
随机试题
A.回盲部B.盲肠和升结肠C.末端回肠D.乙状结肠和直肠细菌性痢疾的好发部位是
图示结构,A点的剪力是()。
施工现场开挖非热管道沟槽的边缘与埋地外电缆沟槽边缘之间的距离不得小于()。
华龙公司采用科目汇总表账务处理程序进行记账,2009年5月1日发生以下收付业务:(1)以现金支付修理费1000元;(2)以银行存款偿还应付账款11700元;(3)通过银行收取货款34000元;(4)转让残料取得现金收入1300元,已存入银行。5月15日华龙
诉讼时效消灭的是一种请求权,而不消灭实体权利。它属于国家法律的强制性规定,当事人均不得对其内容作任何修改。()
E公司2016年销售收入为5000万元,2016年底净负债及股东权益总计为2500万元(其中股东权益1250万元),预计2017年销售增长率为8%,税后经营净利率为10%,净经营资产周转率保持与2016年一致,净负债的税后利息率为4%,净负债利息按上年末净
在安排旅游活动时,要对客观条件的变化,给予恰当的估计,在()上留有适当的余地。
寻找①有人说,人生就像一株蒲公英,风一吹就散,飞到各处,但是只有一处最为适合。说的不错,人生也需要走许多弯路,我们一边成长,一边寻找,寻找那最适合我们的未来。②对我来说,寻找就是人生。有人说,活着和生活不同。那是因为活着需要的是物质,而
酝酿效应:指的是“难题一直没有解决,经过一段时间后意外得到满意答案”的现象。下列不涉及酝酿效应的是()。
Miserabilists’fearofchange:idealists’hopeforabetterworld:anall-purposeadultnostalgiaforlostyouth:allthesethin
最新回复
(
0
)