首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组 的通解为[2,1,0,1]T+k[1,-1,2,0]T.记 αj=[a1j,a2j,a3j,a4j]T,j=1,2,…,5. 问:(1)α4能否由α1,α2,α3,α5线性表出,说明理由. (2)α4能否由α1,α2,α3线性表出,说明理
已知线性方程组 的通解为[2,1,0,1]T+k[1,-1,2,0]T.记 αj=[a1j,a2j,a3j,a4j]T,j=1,2,…,5. 问:(1)α4能否由α1,α2,α3,α5线性表出,说明理由. (2)α4能否由α1,α2,α3线性表出,说明理
admin
2016-09-19
39
问题
已知线性方程组
的通解为[2,1,0,1]
T
+k[1,-1,2,0]
T
.记
α
j
=[a
1j
,a
2j
,a
3j
,a
4j
]
T
,j=1,2,…,5.
问:(1)α
4
能否由α
1
,α
2
,α
3
,α
5
线性表出,说明理由.
(2)α
4
能否由α
1
,α
2
,α
3
线性表出,说明理由.
选项
答案
(1)α
4
能由α
1
,α
2
,α
3
,α
5
线性表出. 由线性非齐次方程组的通解[2,1,0,1]
T
+k[1,-1,2,0]
T
知 α
5
=(k+2)α
1
+(-k+1)α
2
+2kα
3
+α
4
, 故 α
4
=-(k+2)α
1
-(-k+1)α
2
-2kα
3
+α
5
. (2)α
4
不能由α
1
,α
2
,α
3
线性表出,因对应齐次方程组的基础解系只有一个非零向量,故r(α
1
,α
2
,α
3
,α
4
)=r(α
1
,α
2
,α
3
,α
4
,α
5
)=4-1=3,且由对应齐次方程组的通解知,α
1
-α
2
+2α
3
=0,即α
1
,α
2
,α
3
线性相关,r(α
1
,α
2
,α
3
)<3,若α
4
能由α
1
,α
2
,α
3
线性表出,则r(α
4
,α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
)<3,这和r(α
1
,α
2
,α
3
,α
4
)=3矛盾,故α
4
不能由α
1
,α
2
,α
3
线性表出.
解析
转载请注明原文地址:https://kaotiyun.com/show/MtT4777K
0
考研数学三
相关试题推荐
将13个分别写有A、A、A、C、E、H、I、I、M、M、N、T、T的卡片随意地排成一行,求恰好排单词“MATHEMATICIAN”的概率.
设向量组α1,α3,α3线性无关,问常数a,b,c满足什么条件时,aα1-α2,bα2-α3,cα3-α1线性相关?
证明下列关系式:A∪B=A∪(B-A)=(A-B)∪(B-A)∪(A∩B).
设向量组α1,α2,…,αm线性无关,向量β1可用它们线性表示,β2不能用它们线性表示,证明向量组α1,α2,…,αm,λβ1+β2(λ为常数)线性无关.
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是().
设f(x)在[a,b]上可积,又,证明φ(x)是[a,b]上的连续函数.
根据级数收敛与发散的定义判别下列级数的收敛性,并求出其中收敛级数的和:
设A为三阶矩阵,A的特征值为λ1=1,λ2=2,λ3=3,其对应的线性无关的特征向量分别为求Anβ.
设随机变量X服从参数为λ的指数分布,则
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.求AB-1.
随机试题
抗日民族统一战线的领导者和倡导者是( )
要达到预防乃至最终消灭脊髓灰质炎的目的,最重要的措施是
A.神经节细胞B.无长突细胞C.光感受器D.双极细胞E.色素上皮
脏腑兼证多见
常见的原生生物传染病是
根据《上市公司并购重组财务顾问业务管理办法》依法对财务顾问主办人进行自律管理的机构是()。
“汉语拼音的学习干扰英语音标的学习”体现的迁移种类是()
若有以下程序#include<stdio.h>voidfun(inta[],intn){intt,i,j;for(i=0;i<n;i+=2)
A、150yuanB、50yuanC、30yuanD、10yuanA
A、Hemayselectaprivateschoolratherthanapublicschool.B、Hecanapplyforfinancialaidorscholarship.C、Hecanworkpar
最新回复
(
0
)