首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组 的通解为[2,1,0,1]T+k[1,-1,2,0]T.记 αj=[a1j,a2j,a3j,a4j]T,j=1,2,…,5. 问:(1)α4能否由α1,α2,α3,α5线性表出,说明理由. (2)α4能否由α1,α2,α3线性表出,说明理
已知线性方程组 的通解为[2,1,0,1]T+k[1,-1,2,0]T.记 αj=[a1j,a2j,a3j,a4j]T,j=1,2,…,5. 问:(1)α4能否由α1,α2,α3,α5线性表出,说明理由. (2)α4能否由α1,α2,α3线性表出,说明理
admin
2016-09-19
64
问题
已知线性方程组
的通解为[2,1,0,1]
T
+k[1,-1,2,0]
T
.记
α
j
=[a
1j
,a
2j
,a
3j
,a
4j
]
T
,j=1,2,…,5.
问:(1)α
4
能否由α
1
,α
2
,α
3
,α
5
线性表出,说明理由.
(2)α
4
能否由α
1
,α
2
,α
3
线性表出,说明理由.
选项
答案
(1)α
4
能由α
1
,α
2
,α
3
,α
5
线性表出. 由线性非齐次方程组的通解[2,1,0,1]
T
+k[1,-1,2,0]
T
知 α
5
=(k+2)α
1
+(-k+1)α
2
+2kα
3
+α
4
, 故 α
4
=-(k+2)α
1
-(-k+1)α
2
-2kα
3
+α
5
. (2)α
4
不能由α
1
,α
2
,α
3
线性表出,因对应齐次方程组的基础解系只有一个非零向量,故r(α
1
,α
2
,α
3
,α
4
)=r(α
1
,α
2
,α
3
,α
4
,α
5
)=4-1=3,且由对应齐次方程组的通解知,α
1
-α
2
+2α
3
=0,即α
1
,α
2
,α
3
线性相关,r(α
1
,α
2
,α
3
)<3,若α
4
能由α
1
,α
2
,α
3
线性表出,则r(α
4
,α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
)<3,这和r(α
1
,α
2
,α
3
,α
4
)=3矛盾,故α
4
不能由α
1
,α
2
,α
3
线性表出.
解析
转载请注明原文地址:https://kaotiyun.com/show/MtT4777K
0
考研数学三
相关试题推荐
血液试验ELISA(enzyme-linkedimmunosorbentassay,酶联免疫吸附测定)是现今检验艾滋病病毒的一种流行方法.假定ELISA试验能正确测出确实带有病毒的人中的95%存在艾滋病病毒,又把不带病毒的人中的1%不正确地识别为存
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:(1)t为何值时,向量组α1,α2,α3线性相关?(2)t为何值时,向量组α1,α2,α3线性无关?
设A,B是同阶正定矩阵,则下列命题错误的是().
α1,α2是向量组(Ⅱ)的一个极大无关组,(Ⅱ)的秩为2,故(Ⅰ)的秩为2.由于(Ⅰ)线性相关,从而行列式|β1,β2,β3|=0,由此解得a=3b;又β3可由向量组(Ⅱ)线性表示,从而β3可由α1,α2线性表示,所以向量组α1,α2,β3线性相关,于是行
求下列隐函数的指定偏导数:
设圆盘x2+y2≤2ax内各点处的面密度与该点到坐标原点的距离成正比,试求该圆盘的重心.
设证明:f(x,y)在点(0,0)处连续且可偏导,并求出fx(0,0)和fy(00)的值.
设随机变量X,Y相互独立,它们的分布函数为FX(x),Fy(y),则Z=min(X,Y)的分布函数为().
随机试题
正常心脏后前位不易观察到的是
右下腹疼痛拒按,或右足屈而不伸,伸则痛甚,甚则局部肿痞,或时时发热,自汗恶寒,舌苔薄腻而黄,脉滑数。方剂选用
气雾剂的优点有()。
《建设工程安全生产管理条例》制定的基本法律依据包括()。
若企业不打算享受现金折扣优惠,则应尽量推迟付款的时间。()
如果会计师事务所非审计项目组成员的主要近亲属,通过继承从审计客户获得直接经济利益,则()。
《与朱元思书》是八年级下册第五单元的一篇课文,如果让你给八年级的学生执教这篇课文,你会怎么做呢?请按要求完成后面的题目:附:《与朱元思书》课文与朱元思书①
缺陷补偿,是指个体在充当社会角色时不可能事事成功,当自我角色目标失败时,常常可能会对相关的社会角色的重要性做重新评价,从而进行自我定义以补偿自己角色缺陷。根据上述定义,下列属于缺陷补偿的是()。
求|cos(x+y)|dxdy,其中D={(x,y)|
A、Assoonasshestarteduniversity.B、Aftershedidsomeresearch.C、Aftershetookaliteraturecourse.D、Whenshemetagood
最新回复
(
0
)