首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知某厂生产x件产品的成本为C(x)=25000+200x+x2(元).问:(Ⅰ)要使平均成本最小,应生产多少件产品?(Ⅱ)若以每件500元的价格出售该产品,要使利润最大,应生产多少件产品? (Ⅰ)要使平均成本最小,应生产多少件产品? (Ⅱ)若以每件500
已知某厂生产x件产品的成本为C(x)=25000+200x+x2(元).问:(Ⅰ)要使平均成本最小,应生产多少件产品?(Ⅱ)若以每件500元的价格出售该产品,要使利润最大,应生产多少件产品? (Ⅰ)要使平均成本最小,应生产多少件产品? (Ⅱ)若以每件500
admin
2017-10-23
97
问题
已知某厂生产x件产品的成本为C(x)=25000+200x+
x
2
(元).问:(Ⅰ)要使平均成本最小,应生产多少件产品?(Ⅱ)若以每件500元的价格出售该产品,要使利润最大,应生产多少件产品?
(Ⅰ)要使平均成本最小,应生产多少件产品?
(Ⅱ)若以每件500元的价格出售该产品,要使利润最大,应生产多少件产品?
选项
答案
(Ⅰ)生产x件产品的平均成本 [*] (x>0), 因[*]在(0,+∞)中仅有唯一零点x=1000,又因[*](x)在其唯一驻点x=1000处取得最小值.即应生产1000件产品才可使平均成本最小. (Ⅱ)若该产品以每件500元的价格售出,则生产x件产品可获利润(单位:元) L(x)=500x—(25000+200x+[*]x
2
,(x≥0). 由边际利润ML=L’(x)=300一[*],可得x=6000是总利润函数L(x)的唯一驻点,又因L"(x)<0,从而L(x)在该点取得最大值.即当产品单价为500元时,生产6000件产品可获利润最大.
解析
转载请注明原文地址:https://kaotiyun.com/show/NEX4777K
0
考研数学三
相关试题推荐
=__________
计算
求∫013x。arcsinxdx.
设二元函数f(x,y)=|x-y|φ(x,y),其中φ(x,y)在点(0,0)处的某邻域内连续.证明:函数f(x,y)在点(0,0)处可微的充分必要条件是φ(0,0)=0.
设f(x)为二阶可导的偶函数,f(0)=1,f"(0)=2且f"(x)在x=0的邻域内连续,则=________.
设A,B同时发生,则C发生.证明:P(C)≥P(A)+P(B)-1.
设A为三阶方阵,A的每行元素之和为5,AX=0的通解为,求Aβ.
设总体X~N(μ,0.2),X1,X2,…,Xn+1为总体X的简单随机样本,记服从的分布.
设ξ,n是相互独立且服从同一分布的两个随机变量,已知ξ的分布律为,i=1,2,3,又设X=max{ξ,η),Y=min{ξ,η),试写出二维随机变量(X,Y)的分布律及边缘分布律,并求P{ξ,η}.
设二维连续型随机变量(X,Y)在区域D={(x,y)|0≤y≤x≤3一y,y≤1}上服从均匀分布,求边缘密度fX(x)及在X=x条件下,关于Y的条件概率密度.
随机试题
下列关于欧洲联盟的表述中,不正确的是()。
审美教育
梁的横截面为图示薄壁工字型,z轴为截面中性轴。设截面上的剪力竖直向下,该截面上的最大弯曲切应力在()。
在深圳证券交易所,公司债券的大宗交易、专项资金管理计划协议交易,协议平台的成交确认时间为每个交易日的9:15~11:30和()。
证券公司经营融资融券业务,应以自己的名义,在证券登记结算机构分别开立()。Ⅰ.融券专用证券账户Ⅱ.信用交易证券交收账户Ⅲ.信用交易资金交收账户Ⅳ.客户信用交易担保证券账户
I’dliketotakethisopportunitytoextendmyheart-feltgratitudetothehost.
设A=(A<0),且AX=0有非零解,则A*X=0的通解为______.
当x>0时,f(lnx)=,则∫-22xf’(x)dx为().
ThereisalwaysexcitementattheOlympicGameswhenanathlete(breaks)arecord.
A、Thewomanwillhavelunchwiththemantomorrow.B、Thewomanisonadietrecently.C、Thewomandeclinestheoffer.D、Thewoma
最新回复
(
0
)