首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知某厂生产x件产品的成本为C(x)=25000+200x+x2(元).问:(Ⅰ)要使平均成本最小,应生产多少件产品?(Ⅱ)若以每件500元的价格出售该产品,要使利润最大,应生产多少件产品? (Ⅰ)要使平均成本最小,应生产多少件产品? (Ⅱ)若以每件500
已知某厂生产x件产品的成本为C(x)=25000+200x+x2(元).问:(Ⅰ)要使平均成本最小,应生产多少件产品?(Ⅱ)若以每件500元的价格出售该产品,要使利润最大,应生产多少件产品? (Ⅰ)要使平均成本最小,应生产多少件产品? (Ⅱ)若以每件500
admin
2017-10-23
51
问题
已知某厂生产x件产品的成本为C(x)=25000+200x+
x
2
(元).问:(Ⅰ)要使平均成本最小,应生产多少件产品?(Ⅱ)若以每件500元的价格出售该产品,要使利润最大,应生产多少件产品?
(Ⅰ)要使平均成本最小,应生产多少件产品?
(Ⅱ)若以每件500元的价格出售该产品,要使利润最大,应生产多少件产品?
选项
答案
(Ⅰ)生产x件产品的平均成本 [*] (x>0), 因[*]在(0,+∞)中仅有唯一零点x=1000,又因[*](x)在其唯一驻点x=1000处取得最小值.即应生产1000件产品才可使平均成本最小. (Ⅱ)若该产品以每件500元的价格售出,则生产x件产品可获利润(单位:元) L(x)=500x—(25000+200x+[*]x
2
,(x≥0). 由边际利润ML=L’(x)=300一[*],可得x=6000是总利润函数L(x)的唯一驻点,又因L"(x)<0,从而L(x)在该点取得最大值.即当产品单价为500元时,生产6000件产品可获利润最大.
解析
转载请注明原文地址:https://kaotiyun.com/show/NEX4777K
0
考研数学三
相关试题推荐
设f(x),g(x)在[a,b]上连续,证明:存在ξ∈(a,b),使得f(ξ)∫ξbg(x)dx=g(ξ)∫aξf(x)dx.
设f(x,y)在有界闭区域D上二阶连续可偏导,且在区域D内恒有条件=0,则().
设随机变量X,Y相互独立,且X~P(1),Y~P(2),求P{max(X,Y)≠0)及P{min(X,Y)≠0}.
有甲、乙两个口袋,两袋中都有3个白球2个黑球,现从甲袋中任取一球放入乙袋,再从乙袋中任取4个球,设4个球中的黑球数用X表示,求X的分布律.
设随机变量X的分布函数为F(x),则下列函数中可作为某随机变量的分布函数的是().
设f(x)二阶可导,f(0)=0,且f"(x)>0.证明:对任意的a>0,b>0,有f(a+6)>f(a)+f(b).
设A为m阶正定矩阵,B为m×n实矩阵.证明:BTAB正定的充分必要条件是r(B)=n.
设一部机器一天内发生故障的概率为,机器发生故障时全天停止工作.若一周5个工作日无故障,则可获利10万元;发生一次故障获利5万元;发生两次故障获利0元;发生三次及以上的故障亏损2万元,求一周内利润的期望值.
设f(x)在[a,+∞)上连续,f(a)<0,而存在且大于零.证明:f(x)在(a,+∞)内至少有一个零点.
设出售某种商品,已知某边际收益是R(x)=(10—x)e-x,边际成本是C(x)=(x2一4x+6)e-x,且固定成本是2,求使这种商品的总利润达到最大值的产量和相应的最大总利润.
随机试题
简述知识产权客体的非物质性。
属于胃肠激素的是
关于类风湿结节的叙述,正确的是
瘀血内停型腹痛,其治疗应首选的方剂是
某建筑公司与应届毕业的大学生王某以书面形式签订了一份劳动合同。下列选项中,应属于该劳动合同必备条款的有()。
某取得了中间介绍业务资格的证券公司接受甲期货公司委托,协助办理开户手续。为了使前来咨询的李某能够开户,证券公司从业人员热情地向李某介绍业务,向李某承诺期货交易无风险,高收益。未仔细审查其提供的资料,甚至未能发现其身份证上的照片与本人不符。请回答下列
下列各项中会导致采用成本法核算长期股权投资的企业,长期股权投资账面价值发生变动的有()。
菌斑细菌是牙周病发病始动因子的证据有哪些?
(1)Vibrationsinthegroundareapoorlyunderstoodbutprobablywidespreadmeansofcommunicationbetweenanimals.(2)In
InChina,whenapersonsitsatadinnerparty,hewillveryoftenrefusethe(11)offoodordrinkthoughheisinfactstill
最新回复
(
0
)