首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)具有二阶连续导数,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x2y]dy=0为一全微分方程,求f(x)及此全微分方程的通解.
设f(x)具有二阶连续导数,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x2y]dy=0为一全微分方程,求f(x)及此全微分方程的通解.
admin
2022-07-21
105
问题
设f(x)具有二阶连续导数,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x
2
y]dy=0为一全微分方程,求f(x)及此全微分方程的通解.
选项
答案
(1)由全微分方程的充要条件得,f(x)满足 [*] 即f’’(x)+f(x)=x
2
,解得 f(x)=C
1
cosx+C
2
sinx+x
2
-2 再由f(0)=0,f’(0)=1可得C
1
=2,C
2
=1.从而 f(x)=2cosx+sinx+x
2
-2 (2)将f(x)的表达式代入原方程中,得 [xy
2
-(2cosx+sinx)y+2y]dx+(-2sinx+cosx+2x+x
2
y)dy=0 由积分法得 u(x,y)=∫
(0,0)
(x,y)
[xy
2
-(2cosx+sinx)y+2y]dx+(-2sinx+cosx+2x+x
2
y)dy =∫
0
y
(-2sinx+cosx+2x+x
2
y)dy =-2ysinx+ycosx+2xy+[*]x
2
y
2
所以原方程的通解为-2ysinx+ycosx+2xy+[*]x
2
y
2
=C.
解析
转载请注明原文地址:https://kaotiyun.com/show/NFf4777K
0
考研数学二
相关试题推荐
设f(x)连续,则在下列变上限积分中,必为偶函数的是()
双曲线(x2+y2)2=x2一y2所围成区域的面积可用定积分表示为()
设非齐次线性方程组Ax=b有两个不同解β1和β2,其导出组的一个基础解系为α1,α2,c1,c2为任意常数,则方程组Ax=b的通解为
设有平面闭区域,D={(x,y)|一a≤x≤a,x≤y≤a},D1={(x,y)|0≤x≤a,x≤y≤a},则(xy+cosxsiny)dxdy=()
设平面区域D由直线y=x,圆x2+y2=2y及y轴所围成,则二重积分=_________。
设曲线y=ax3+bx2+cx+d经过(一2,44),x=一2为驻点,(1,一10)为拐点,则a,b,c,d分别为____________.
交换积分次序∫—10dy∫21—yf(x,y)dy=______。
设f(x)∈C[1,+∞),广义积分.∫1+∞f(x)dx收敛,且满足f(x)=,则f(x)=_______.
设y=y(x)由方程确定,则曲线y=y(x)上x=0对应的点处的曲率半径R=__________.
随机试题
下列哪些不是腹痛与肝关系密切的表现
根据细菌对营养物质的需要,可以将细菌的营养类型分为
A、B受体阻滞剂B、钙拮抗剂C、硝酸酯类D、多巴胺E、ACEI在所有冠心病患者降低心肌梗死发生和减少死亡应使用
从不同的影响因素考虑,可将审计风险完整地划分为()。
甲公司2012年度和2013年度发生的有关交易或事项如下:(1)2012年5月10日,甲公司的客户(丙公司)因产品质量问题向法院提起诉讼.请求法院裁定甲公司赔偿损失200万元,截止2012年6月30日,法院尚未对上述案件作出判决,在向法院了解情况并向法院
与接受学习对应的最主要的教授方法是()。
绿色和平组织已经构想出一种环保型样车SMILE(“体积小、智能化、重量轻、效率高”四个英文单词的缩写)。该组织希望这一概念能流行起来。这种汽车主要靠高于正常压力的增压器增加汽缸的动力或使混合燃料注入汽缸。一些专家说,这是使小型发动机充分发挥性能和提高燃料效
______方法是不能被当前类的子类重新定义的方法。
软件按功能可以分为应用软件、系统软件和支撑软件(或工具软件)。下面属于应用软件的是
Educationisprimarilytheresponsibilityofthestates.Stateconstitutionssetupcertainstandardsandrulesfortheestablis
最新回复
(
0
)