首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)具有二阶连续导数,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x2y]dy=0为一全微分方程,求f(x)及此全微分方程的通解.
设f(x)具有二阶连续导数,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x2y]dy=0为一全微分方程,求f(x)及此全微分方程的通解.
admin
2022-07-21
100
问题
设f(x)具有二阶连续导数,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x
2
y]dy=0为一全微分方程,求f(x)及此全微分方程的通解.
选项
答案
(1)由全微分方程的充要条件得,f(x)满足 [*] 即f’’(x)+f(x)=x
2
,解得 f(x)=C
1
cosx+C
2
sinx+x
2
-2 再由f(0)=0,f’(0)=1可得C
1
=2,C
2
=1.从而 f(x)=2cosx+sinx+x
2
-2 (2)将f(x)的表达式代入原方程中,得 [xy
2
-(2cosx+sinx)y+2y]dx+(-2sinx+cosx+2x+x
2
y)dy=0 由积分法得 u(x,y)=∫
(0,0)
(x,y)
[xy
2
-(2cosx+sinx)y+2y]dx+(-2sinx+cosx+2x+x
2
y)dy =∫
0
y
(-2sinx+cosx+2x+x
2
y)dy =-2ysinx+ycosx+2xy+[*]x
2
y
2
所以原方程的通解为-2ysinx+ycosx+2xy+[*]x
2
y
2
=C.
解析
转载请注明原文地址:https://kaotiyun.com/show/NFf4777K
0
考研数学二
相关试题推荐
设f(χ)是二阶常系数非齐次线性微分方程y〞+Py′+qy=sin2χ+2eχ的满足初始条件f(0)=f′(0)=0的特解,则当χ→0时,().
微分方程y’’一4y=e2x的通解为______。
设平面区域D由直线y=x,圆x2+y2=2y及y轴所围成,则二重积分=_________。
设函数f(u)可微,且f’(0)=,则z=f(4x2一y2)在点(1,2)处的全微分dz|(1,2)=______。
设y(x)为微分方程y’’-4y’+4y=0满足初始条件y(0)=1,y’(0)=2的特解,则=______
曲线y=x2与直线y=x+2所围成的平面图形的面积为________.
已知y"+(x+e2y)y’3=0。若把x看成因变量,y看成自变量,则方程化为什么形式?并求此方程通解.
计算二重积分其中D是由直线y=2,y=x和双曲线xy=1所围成的平面域.
设y=f(x)是第一象限内连接点A(0,1),B(1,0)的一段连续曲线,M(x,y)为该曲线上任意一点,点C为M在x轴上的投影,O为坐标原点。若梯形OCMA的面积与曲边三角形CBM的面积之和为,求f(x)的表达式。
设xOy平面上有正方形D={(x,y)|0≤x≤1,0≤y≤1}及直线l:x+y=t(t≥0)。若S(t)表示正方形D位于直线l左下方部分的面积,试求∫0xS(t)dt(x≥0)。
随机试题
下列各项中,能作为短期偿债能力辅助指标的是
原发性胆汁淤积性肝硬化最常见的早期症状为
2012年,某市受理专利申请量82682件,比上年增长3.1%。其中,发明专利37139件,增长15.5%。专利授权量51508件,增长7.4%。其中,发明专利11379件,增长24.2%。2012年全市有高新技术企业4312家,技术先进型服务企业281家
根据《企业会计准则第15号——建造合同》,下列费用中,不应计入工程成本的是()。
()接受承运人的委托,代理与船舶有关的一切业务的人。
可持续增长率可以表达为()。
养花专业户张某为防止花被偷,在花房周围私拉电网。一日晚,李某偷花不慎触电,经送医院抢救,不治身亡。张某对这种结果的主观心理态度是()。
细胞凋亡和程序性坏死的主要区别包括()。
犯罪的主观方面包括()。
Giventhechoice,youngerprofessionalsaremostinterestedinworkingattechcompanieslikeAppleandgovernmentagencieslike
最新回复
(
0
)