首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m阶实对称矩阵且正定,BT为m×n实矩阵,BT为B的转置矩阵,试证: BTAB为正定矩阵的充分必要条件是r(B)=n。
设A为m阶实对称矩阵且正定,BT为m×n实矩阵,BT为B的转置矩阵,试证: BTAB为正定矩阵的充分必要条件是r(B)=n。
admin
2018-02-07
64
问题
设A为m阶实对称矩阵且正定,B
T
为m×n实矩阵,B
T
为B的转置矩阵,试证:
B
T
AB为正定矩阵的充分必要条件是r(B)=n。
选项
答案
必要性:设B
T
AB为正定矩阵,则r(B
T
AB)=n,因为r(B
T
AB)≤r(B)≤n,故有r(B)=n。 充分性:因(B
T
AB)
T
=B
T
A
T
(B
T
)
T
=B
T
AB,故B
T
AB为实对称矩阵。 若r(B)=n,则线性方程组Bx=0只有零解,从而对任意的n维实列向量x≠0,有Bx≠0。又A为正定矩阵,所以对于Bx≠0,有(Bx)
T
A(Bx)>0。于是当x≠0,有x
T
(B
T
AB)x=(Bx)
T
A(Bx)>0,故B
T
AB为正定矩阵。
解析
转载请注明原文地址:https://kaotiyun.com/show/NTk4777K
0
考研数学二
相关试题推荐
证明:函数在(0,0)点连续,fx(0,0),fy(0,0)存在,但在(0,0)点不可微.
设问当k为何值时,函数f(x)在其定义域内连续?为什么?
设A是n(n>1)阶矩阵,满足Ak=2E(k>2,k∈Z+),则(A+)k=().
对(I)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
已知二次型f(x1,x2,x3)=4x2-3x3+4x1x2-4x1x3+8x2x3.写出二次型f的矩阵表达式;
设4维向量组α1=(1+α,1,1,1)T,α2=(2,2+α,2,2)T,α3=(3,3,3+α,3)T,α4=(4,4,4,4+α)T,问口为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示.求α的值;
考虑二次型f=x12+4x22+4x32+2λx1x2-2x1x3+4x2x3,问λ取何值时,f为正定二次型.
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记。(1)证明二次型f对应的矩阵为2ααT+ββT;(2)若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22.
随机试题
()是指由专门的学前教育机构实施的,根据社会的要求和学前儿童身心发展的特点和需要,对学前儿童实施有目的、有计划、有组织的影响,使之能够在德、智、体、美等方面都得到全面、和谐发展的教育活动的总和。
下列选项中,除()以外均为出卖人的标的物存在权利瑕疵。
一种以提供选择权的交易合约,购买合约的人可以获得一种在指定时间内按协议价格买进或卖出一定数量的某种金融资产的权利。这种金融工具称之为()。
甲公司实行累积带薪缺勤货币补偿制度,补偿金额为放弃带薪休假期间平均日工资金额的3倍。2019年,甲公司有20名销售人员放弃5天的带薪休假,该公司平均每名职工每个工作日工资为100元。则甲公司因这20名员工放弃年休假应确认的成本费用总额为(
某教师为了让学生们认识到只有学好化学知识,才能解决生活中的实际问题,在教学过程中利用多媒体展示“南极臭氧空洞”的图片、环保部门对大气检测的资料片,以及机动车辆尾气排放图片、工厂排放废气而产生“浓烟滚滚”的景象等。该情境属于()。
简述感觉的特性。
某校为了解学生喜爱的体育活动项目,随机抽查了100名学生,让每人选一项自己喜欢的项目并制成如图所示的扇形统计图,如果该校有1200名学生,则喜爱跳绳的学生约有__________人.
Iwon’tbemodest.IamgratifiedtodiscoverthatapaperIpennedoninequalitymadeitswayintoMattMiller’sWashingtonPos
在微型计算机中,应用最普遍的字符编码是
Theconceptofpersonalchoiceinrelationtohealthbehaviorsisanimportantone.Anestimated90percentofallillnessesmay
最新回复
(
0
)