首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,1]上连续且非负,证明:在(0,1)内存在一点ξ,使ξf(ξ)=f(x)dx.
设函数f(x)在[0,1]上连续且非负,证明:在(0,1)内存在一点ξ,使ξf(ξ)=f(x)dx.
admin
2016-11-03
42
问题
设函数f(x)在[0,1]上连续且非负,证明:在(0,1)内存在一点ξ,使ξf(ξ)=
f(x)dx.
选项
答案
由题设知,显然F(x)在[0,1]上连续,在(0,1)内可导,且F(0)=0,F(1)=0,则F(x)在[0,1]上满足罗尔定理的诸条件.由该定理知,存在一点ξ∈(0,1),使F′(ξ)=0,即 [*] 亦即 [*] 注意 若按照一般辅助函数F(x)的构造方法,自然想到令F(x)=xf(x)一[*]f(t)dt,但此时F(0)=-[*]f(t)dt≤0,F(1)=f(1)一[*]f(t)dt=f(1)≥0,得不到F(x)在[0,1]区间端点处严格异号,因而不能直接使用罗尔定理.
解析
将待证等式改写为xf(x)=
f(t)dt,即xf(x)一
f(t)dt=0.亦即xf(x)+
f(t)dt=[x
f(t)dt]′=0,因而构造辅助函数F(x)=x
f(t)dt.下只需证明F(x)在[0,1]上满足罗尔定理的条件即可.
转载请注明原文地址:https://kaotiyun.com/show/NTu4777K
0
考研数学一
相关试题推荐
2
用列举法表示下列集合:(1)方程x2-7x+12=0的根的集合(2)抛物线y=x2与直线x—y=0交点的集合(3)集合{x||x-1|≤5的整数}
证明:(1)周长一定的矩形中,正方形的面积最大;(2)面积一定的矩形中,正方形的周长最小。
设函数z=z(x,y)由方程确定,其中F为可微甬数,且F2’≠0,则=_______.
设f(x)在闭区间[0,c]上连续,其导数fˊ(x)在开区间(0,c)内存在且单调减少,f(0)=0,试应用拉格朗日中值定理证明不等式:f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c.
设数列{an}满足条件:a0=3,a1=1,an-2-n(n-1)an=0(n≥2),S(x)是幂级数的和函数。求S(x)的表达式。
微分方程满足y|x=1=1的特解为y=_________.
(1998年试题,九)设y=f(x)是区间[0,1]上的任一非负连续函数.试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的曲边梯形面积;
设平面曲线L上一点M处的曲率半径为ρ,曲率中心为A,AM为L在点M处的法线,法线上的两点P,Q分别位于L的两侧,其中P在AM上,Q在AM的延长线AN上,若P,Q满足|AP|.|AQ|=ρ2,称P,Q关于L对称.设L:,P点的坐标为.
计算曲面积分I=,其中∑是曲面2x2+2y2+z2=4的外侧.
随机试题
对于企业裁减人员的决定,工会依法可采取的行动是:()
便于生产者控制产品质量特性的商标决策是使用()
结核性脑膜炎最易发生在结核原发感染后
某建筑物建筑面积4000m2,经济寿命40年,单位建筑面积的重置价格为2500元/m2,有效经过年数为15年,残值率为5%,该建筑物现值为()。
设计过程中要严格按照规定的程序进行()管理,以保证设计的质量。
确定招标物业项目的管理服务模式的内容主要包括()。
可以全面支持除系统规划外的每一个开发阶段的工作的一种自动化或半自动化的信息系统开发方法是()。
毛泽东在《中国社会各阶级的分析》中,将中国资产阶级区分为()。
Inthenextcenturywe’llbeabletoalterourDNAradically,encodingourvisionsandvanitieswhileconcoctingnewlife-forms.
Sincewearesocialbeings,thequalityofourlivesdependsinlargemeasureonourinterpersonal(人与人之间的)relationships.Onestr
最新回复
(
0
)