首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量Yi(i=1,2,3)相互独立,并且服服从参数为P的0-1分布,令Xk= 求随机变量(X1,X2)的联合概率分布.
设随机变量Yi(i=1,2,3)相互独立,并且服服从参数为P的0-1分布,令Xk= 求随机变量(X1,X2)的联合概率分布.
admin
2017-10-25
56
问题
设随机变量Y
i
(i=1,2,3)相互独立,并且服服从参数为P的0-1分布,令X
k
=
求随机变量(X
1
,X
2
)的联合概率分布.
选项
答案
易见随机变量(X
1
,X
2
)是离散型的,它的全部可能取值为(0,0),(0,1),(1,0),(1,1),现在要计算出取各相应值的概率,注意到事件Y
1
,Y
2
,Y
3
相互独立且服从同参数P的0-1分布,因此它们的和Y
1
+Y
2
+Y
3
[*]Y服从二项分布B(3,P),于是 P{X
1
=0,X
2
=0}=P{Y
1
+Y
2
+Y
3
≠1,Y
1
+Y
2
+Y
3
≠2} =P{Y=0}+P{Y=3}=q
3
+P
3
,(q[*]1一p) P{X
1
=0,X
1
1} =P{Y
1
+Y
2
+Y
3
≠1,Y
1
+Y
2
+Y
3
=2} =P{Y=2}=3p
2
q, P{X
1
=1,X
2
=0}=P{Y
1
+Y
2
+Y
3
=1,Y
1
+Y
2
+Y
3
≠2}=P{Y=1}=3pq
2
, P{X
1
=1,X
2
=1}=P{Y
1
Y
2
+Y
3
=1,Y
1
+Y
2
+Y
3
=2}=P{[*]}=0. 由上计算可知(X
1
,X
2
)的联合概率分布为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/NbX4777K
0
考研数学三
相关试题推荐
求二元函数z=f(x,y)=x2y(4一x—y)在由x轴、y轴及x+y=6所围成的闭区域D上的最小值和最大值.
设随机变量X~N(μ,σ2),Y~U[-π,π],且X,Y相互独立,令Z=X+Y,求fZ(z).
设A为n阶矩阵且r(A)=n一1.证明:存在常数k,使得(A*)2=hA*.
求极限
求函数y=ln(x+)的反函数.
设有来自三个地区的各10名、15名和25名考生的报名表,其中女生的报名表分别为3份、7份和5份.随机取出一个地区,再从中抽取两份报名表.(1)求先抽到的一份报名表是女生表的概率p;(2)设后抽到的一份报名表为男生的报名表,求先抽到的报名
设总体X~U(θ1,θ2),X1,X2,…,Xn是来自总体X的样本,求θ1,θ2的矩估计和最大似然估计.
设f(x)∈C[0,1],f(x)>0.证明积分不等式:ln∫01f(x)dx≥∫01lnf(x)dx.
用切比雪夫不等式确定,掷一均质硬币时,需掷多少次,才能保证‘正面’出现的频率在0.4至0.6之间的概率不小于0.9.
袋中有n张卡片,分别记有号码1,2,…,n,从中有放回地抽取k张,以X表示所得号码之和,求EX,DX.
随机试题
在Shell程序中,_______命令可以处理由信号引起的软中断。
LaoWangisaselflessman,soundernocircumstances______anythingthatwillbenefithimselfandharmtheinterestsofothers
白芍炮制品中适用于肝旺脾虚,腹痛腹泻的是()
患者,女性,65岁,在地上滑倒,造成股骨近端骨折,行X线片确诊。那么如果是头下型骨折.并有移位治疗应该是
超声波雾化吸入器内的晶体换能器位于()。
某地区开展了职工职业病统计和调查,取得大量数据。对这些数据进行统计分析时,应包括()两项内容。
上述材料供应合同无效,此时担保合同( )。合同终止后,当事人也应当遵循诚实信用的原则,根据交易习惯履行通知、协助保密等义务,称为( )。
科学界一向认为,行星本身是没有能源的,虽然在夜间我们能看到行星.但行星发光只不过是反射了太阳光的结果。然而,最近报道指出,木星放射出来的能量明显多于它从太阳吸收的能量。因此让人产生疑问:木星有热核能源吗?这种能源是在大气层里还是在它的内部?经过进一步的研究
贝勃定律是指当人经历强烈的刺激后,再施予的刺激对他(她)来说也就变得微不足道。就心理感受来说,第一次大刺激能冲淡第二次的小刺激。根据上述定义,下列符合贝勃定律的是:
六个月国库券即期利率为4%,一年期国库券即期利率为5%,则六个月后隐含的六个月远期利率为()。
最新回复
(
0
)