首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,2]上连续,在(0,2)内具有二阶导数,且f(0)=f(2)=0,f(1)=2.求证:至少存在一点ξ∈(0,2)使得f″(ξ)=—4.
设f(x)在[0,2]上连续,在(0,2)内具有二阶导数,且f(0)=f(2)=0,f(1)=2.求证:至少存在一点ξ∈(0,2)使得f″(ξ)=—4.
admin
2019-01-29
45
问题
设f(x)在[0,2]上连续,在(0,2)内具有二阶导数,且f(0)=f(2)=0,f(1)=2.求证:至少存在一点ξ∈(0,2)使得f″(ξ)=—4.
选项
答案
转化为证明某函数的二阶导数在(0,2)[*]零点.设 g″(x)= —4.令F(x)=f(x)—g(x)则[*]ξ∈(0,2),使f″(ξ)= —4[*]F″(ξ)=0. 注意g(x)= —2x
2
+c
1
x+c
2
,于是 F(0)=f(0)—g(0)= —c
2
, F(1)=f(1)—g(1)=4—c
1
—c
2
, F(2)=f(2)—g(2)=8—2c
1
—c
2
. 为使F(0)=F(1)=F(2),取c
1
=4,c
2
=0,F(x)=f(x)—g(x)=f(x)—(—2x
2
+4x)满足F(0)=F(1)=F(2)=0.由于函数F(x)在[0,2]上连续,在(0,2)内二阶可导,因而可在区间[0,1]与[1,2]上分别对函数F(x)应用罗尔定理,从而知分别存在η
1
∈(0,1)与η
2
∈(1,2)使得F′(η
1
)=F′(η
2
)=0,由题设知F′(x)在区间[η
1
,η
2
]上也满足罗尔定理的条件,再在区间[η
1
,η
2
]上对导函数F′(x)应用罗尔定理,又知存在ξ∈(η
1
,η
2
)[*](0,2)使得F″(ξ)=f″(ξ)—g″(ξ)=0,即f″(ξ)=g″(ξ)= —4成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/Nwj4777K
0
考研数学二
相关试题推荐
求极限:.
设y=exsinx,求y(n).
求函数的导数:y=(a>0).
曲线y=的曲率及曲率的最大值分别为___________.
设f(x)在[0,+∞)上连续,0<a<b,且∫A+∞出收敛,其中常数A>0.试证明:
求下列积分:.
求函数y=的导数.
设f(u,v)具有二阶连续偏导数,且满足f′u(u,v)+f′v(u,v)=uv求y=e-2χf(χ,χ)所满足的一阶微分方程_______,并求其通解为_______.
设f(x),g(x)(a<x<b)为大于零的可导函数,且f’(x)g(x)-f(x)g’(x)<0,则当a<x<bb时,有().
若函数y=f(x),有f’(x)=,则当△x→0时,该函数在x=x0处的微分dy是
随机试题
不从众分为三种情况:()、()、()。
阅读《季氏将伐颛臾》中的一段文字,然后回答小题。孔子曰:“求!周任有言曰:‘陈力就列,不能者止。’危而不持,颠而不扶,则将焉用彼相矣?且尔言过矣,虎兕出于柙,龟玉毁于椟中,是谁之过与?”将“虎兕出于柙,龟玉毁于椟中”译成现代汉语,并说明这两句话的
下列哪项不符合心房颤动的临床表现?
正常足月新生儿。母乳喂养后应取的体位是
男性,42岁,高血压病史5年,近2周自感头痛头晕加重,伴心悸明显。查体:血压180/100mmHg起。ECG示:二度Ⅱ型房室传导阻滞。控制血压不宜选择下列哪项
此建设项目(上题)污水水质复杂程度为()。
根据《最高人民法院关于审理建设工程施工合同纠纷案件适用法律问题的解释》第16条的规定,因设计变更导致建设工程的工程量或者质量标准发生变化,当事人对该部分工程价款不能协商一致的,该如何处理()。
读图文材料。回答问题。天津近、现代工业集聚地经历了由南、北运河与海河交汇处附近→市区海河两岸、铁路沿线→市区边缘→滨海地区、卫星城镇的变化过程。(4)山区农家乐旅游活动吸引城市游客的原因是_______;这种旅游活动对区域文化的积极响是______
幼小衔接
财政专家指出,公共风险不仅产生于因政府政策不当导致的国有资产流失,而且由于政府直接积极参与经济生活,如政府直接参与国有企业,调控金融机构,这些重要经济领域一旦发生大面积损失,将会直接酿成公共风险,从而造成财政赤字、债务偿还压力。因此,如果要想实施稳健的财政
最新回复
(
0
)