首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设线性方程组A3×4X=b有通解 k1[1,2,0,一2]T+k2[4,一1,一1,一1]T+[1,0,一1,1]T,其中k1,k2是任意常数,则下列向量中也是AX=b的解向量的是( ).
设线性方程组A3×4X=b有通解 k1[1,2,0,一2]T+k2[4,一1,一1,一1]T+[1,0,一1,1]T,其中k1,k2是任意常数,则下列向量中也是AX=b的解向量的是( ).
admin
2017-07-26
120
问题
设线性方程组A
3×4
X=b有通解
k
1
[1,2,0,一2]
T
+k
2
[4,一1,一1,一1]
T
+[1,0,一1,1]
T
,其中k
1
,k
2
是任意常数,则下列向量中也是AX=b的解向量的是( ).
选项
A、α
1
=[1,2,0,一2]
T
B、α
2
=[6,1,一2,一2]
T
C、α
3
=[3,1,一2,4]
D、α
4
=[5,1,一1,一3]
T
答案
B
解析
由题设知,通解为
k
1
ξ
1
+k
2
ξ
2
+η=k
1
[1,2,0,一2]
T
+k
2
[—4,一1,一1,一1]
T
+[—1,0,一1,1—1
T
.
因α
1
=ξ
1
,α
4
=ξ
1
+ξ
2
均是对应齐次方程的解,故(A)、(D)不成立,
α
2
,α
3
是否是AX=B的解向量,则要考虑是否存在k
1
,k
2
,使得
α
2
=k
1
ξ
1
+k
2
ξ
2
+η 及α
3
=k
1
ξ
1
+k
2
ξ
2
+η
即 α
2
一η=k
1
ξ
1
+k
2
ξ
2
,α
3
一η=k
1
ξ
1
+k
2
ξ
2
是否有解,因
[ξ
1
,ξ
2
,α
2
一η,α
3
一η]=
,
知α
2
一η可由ξ
1
,ξ
2
表出,α
3
一η不能由ξ
1
,ξ
2
表出.故α
2
是AX=b的解向量.故选B.
转载请注明原文地址:https://kaotiyun.com/show/NyH4777K
0
考研数学三
相关试题推荐
设离散型二维随机变量(X,Y)的取值为(xi,yi)(i,j=1,2),且试求:二维随机变量(X,Y)的联合概率分布;
函数f(x)=(x-x3)sinπx的可去间断点的个数为
[*]
设某商品的需求函数为Q=160—2P,其中Q,P分别表示需求量和价格,如果该商品需求弹性的绝对值等于1,则商品的价格是().
设f(x)在闭区间[0,c]上连续,其导数fˊ(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明不等式:f(a+b)≤f(a)+f(b),其中常数,a,b满足条件0≤a≤b≤a+b≤c.
设f(x)在[a,b]上连续,在(a,6)内二阶可导,f(a)=f(b)=0,∫ab)dx=0.证明:(Ⅰ)存在ξi∈(a,b),使得f(ξi)=f’’(ξi)(i=1,2);(Ⅱ)存在η∈(a,b),使得f(η)=f’’(η).
设函数f(r)当r>0时具有二阶连续导数,令,则当x,y,z与t不全为零时=
设函数f(x)在点x0的某邻域内有定义,且f(x)在点x0处间断,则在点x0处必定间断的函数为()
铁路一编组站随机地编组发往三个不同地区E1,E2和E3的各2节、3节和4节车皮,求发往同一地区的车皮恰好相邻的概率p.
求初值问题的解.
随机试题
政府发行债券的情况有()。
过氧化苯甲酰是基托树脂聚合反应的A.引发剂B.促进剂C.催化剂D.还原剂E.阻聚剂
内核小组通常由( )名专业人士组成,这些人员要保持稳定性和独立性。
下列关于银行业资本监管的说法,不正确的是()。
有因果关系的变量常常能够找到,所以因果预测模型有很大的准确性。
()是世界上最大、最高的埃及式金字塔。
老刘和小王参加期末考试,每个人均参加了5门考试。老刘的平均分是80分,小王的平均分是90分,两人每门成绩都为整数且不相同。老刘最高的一门成绩和小王最低的一门成绩相同,问小王最高的一门成绩比老刘最低的一门成绩最多高多少分?()
Inthe20thcenturytheplanet’spopulationdoubledtwice.Itwillnotdoubleevenonceinthe【C1】______century,becausebirthr
______itisgenerallyagreedthatsex-rolestereotypingcontributestonarrowlydefinedexpectationsabouthumanpotential,limi
Probablyforaslongastherehavebeensalesforces,managershavesoughtwaystodeterminewhethertheyareeffectiveornot.
最新回复
(
0
)