首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A、B为同阶实对称矩阵,A的特征值全大于a,B的特征值全大于b,a、b为常数,证明:矩阵A+B的特征值全大于a+b.
设A、B为同阶实对称矩阵,A的特征值全大于a,B的特征值全大于b,a、b为常数,证明:矩阵A+B的特征值全大于a+b.
admin
2018-08-02
102
问题
设A、B为同阶实对称矩阵,A的特征值全大于a,B的特征值全大于b,a、b为常数,证明:矩阵A+B的特征值全大于a+b.
选项
答案
设λ为A+B的任一特征值,则有X≠0,使(A+B)X=λX[*](A+B)X-(a+b)X=λX-(a+b)X[*][(A=aE)+(B-bE)]X=[λ-(a+b)]X,故λ-(a+b)为(A-aE)+(B-bE)的特征值,由条件易知A-aE及B-bE均正定,故(A-aE)+(B-bE)正定,因而它的特征值λ-(a+b)>0,[*]λ>a+b,即A+B的任一特征值λ都大于a+b.设s为A+B的最小特征值,对应的特征向量为X
1
,设A、B的最小特征值分别为λ
1
和μ
1
,有s=[*]≥λ
1
+μ
1
>a+b.故A+B的特征值全大于a+b.
解析
转载请注明原文地址:https://kaotiyun.com/show/O2j4777K
0
考研数学二
相关试题推荐
设ξ1=为矩阵A=的一个特征向量.(I)求常数a,b及ξ1所对应的特征值;(Ⅱ)矩阵A可否相似对角化?若A可对角化,对A进行相似对角化;若A不可对角化,说明理由.
设非齐次线性方程组有三个线性无关解α1,α2,α3,(Ⅰ)证明系数矩阵的秩r(A)=2;(Ⅱ)求常数a,b及通解.
设矩阵A=相似于矩阵B= (I)求a,b的值; (II)求可逆矩阵P,使P-1AP为对角矩阵.
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3).证明:存在ξ∈(0,3),使得f"(ξ)-2f’(ξ)=0.
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g’(x)
设A为三阶矩阵,Aαi=iαi(i=1,2,3),,求A.
设n阶矩阵A满足(aE-A)(bE-A)=O且a≠b.证明:A可对角化.
设A为n阶矩阵,且|A|=0,则A().
设A,B皆为n阶矩阵,则下列结论正确的是().
设f(x)为二阶可导的偶函数,f(0)=1,f"(0)=2且f"(x)在x=0的邻域内连续,则=_______
随机试题
便秘
房改的基本内容可概括为“三建四改”。()
下列关于资金时间价值的说法中,正确的有()。
防止黑客人侵的主要措施有()。
安全性、流动性、盈利性的关系是()。
A公司于2009年3月8日由B公司、C公司、D公司、E公司共同以发起设立方式成立。A公司成立时的股本总额为人民币30000万元(每股面值为人民币l元,下同)。2012年8月8日A公司获准发行10000万股社会公众股,并于8月31日上市;此次发行完毕后,股
某个人独资企业投资人聘用甲管理企业事务,在个人独资企业经营中,甲有权决定将该企业的商标有偿转让给他人使用。()
某思想品德课教师在学期末将班级每个学生的思想品德发展状况与本学期初学生的思想品德发展状况进行比较,从而对每个学生的思想品德发展状况进行评价。该教师采取的教学评价方式属于()。
当学完单词hall(球)之后,再学习football(足球)时,产生的迁移是()。
当Word“编辑”菜单中的“剪切”和“复制”命令呈浅灰色而不能被选择时,则表示()。
最新回复
(
0
)