首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设λ1,λ2,…,λn是n阶方阵A的互异特征值,α1,α2,…,αn是A的分别对应于这些特征值的特征向量,证明α1,α2,…,αn线性无关;
设λ1,λ2,…,λn是n阶方阵A的互异特征值,α1,α2,…,αn是A的分别对应于这些特征值的特征向量,证明α1,α2,…,αn线性无关;
admin
2021-07-27
29
问题
设λ
1
,λ
2
,…,λ
n
是n阶方阵A的互异特征值,α
1
,α
2
,…,α
n
是A的分别对应于这些特征值的特征向量,证明α
1
,α
2
,…,α
n
线性无关;
选项
答案
用数学归纳法. ①由特征向量α
1
≠0,故α
1
线性无关; ②设前k=1个特征向量α
1
,α
2
,…,α
k-1
线性无关,以下证明α
1
,α
2
,…,α
k
线性无关.k个互异特征值λ
1
,λ
2
,…,λ
k
对应特征向量α
1
,α
2
,…,α
k
.设存在一组数l
1
,l
2
,…,l
k
,使得l
1
α
1
+l
2
α
2
+…+l
k
α
k
=0,(*)在(*)式两端左乘A,有l
1
Aα
1
+l
2
Aα
2
+…+l
k
Aα
k
=0,即l
1
λ
1
α
1
+l
2
λ
2
α
2
+…+l
k
λ
k
α
k
=0,(**)又在(*)式两端同乘λ
k
有l
1
λ
k
α
1
+l
2
λ
k
α
2
+…+l
k
λ
k
α
k
=0,(***)用(**)式减去(***)式,得l
1
(λ
1
-λ
k
)α
1
+l
2
(λ
2
-λ
k
)α
2
+…+l
k-1
(l
k-1
-l
k
)α
k-1
=0.由归纳假设α
1
,α
2
,…,α
k-1
线性无关,故l
1
(λ
1
-λ
k
)+l
2
(λ
2
-λ
k
)+…+l
k-1
(l
k-1
-l
k
)=0,又λ
i
-λ
k
≠0(i=1,2,…,k-1),故l
1
=l
2
=…=λ
k-1
=0.代回(*)式,于是l
k
α
k
=0,由α
k
≠0,有l
k
=0,于是α
1
,α
2
,…,α
k
线性无关.所以n个互异特征值对应特征向量α
1
,α
2
,…,α
n
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/OFy4777K
0
考研数学二
相关试题推荐
设f(x),g(x)在区间[a,b]上连续,且g(x)
设矩阵,三阶矩阵B满足ABA*=E一BA—1,试计算行列式|B|。
一个值不为零的n阶行列式,经过若干次矩阵的初等变换后,该行列式的值()
设A为m×n阶矩阵,且r(A)=m
设η1,η2,η3为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用η1,η2,η3线性表示,并且r(A)=n-3,证明η1,η2,η3为AX=0的一个基础解系.
设奇函数f(χ)在[-1,1]上二阶可导,且f(1)=1,证明:(1)存在ξ∈(0,1),使得f′(ξ)=1;(2)存在η∈(-1,1),使得f〞(η)+f′(η)=1.
设A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=-2为A的一个特征值.其对应的特征向量为α3,下列向量中是A的特征向量的是().
某化肥厂生产某产品1000吨,每吨定价为130元,销售量在700吨以内时,按原价出售,超过700吨时,超过的部分打九折出售,试将销售总收益与总销售量的函数关系用数学表达式表出.
设a=,β=,则当χ→0时,两个无穷小的关系是().
设二次型f(x1,x2,x3)=2x12+2x22+2x32+2ax1x2+2ax2x3+2ax1x3,若a是使A正定的正整数,用正交变换把二次型f(x1,x2,x3)化为标准型,并写出所用正交变换。
随机试题
乘火车进入北京站的游客最先见到的北京城的一座标志性建筑是明清两代北京外城东便门的箭楼。()
患者,男,18岁。右颌下区肿痛7天,加剧3天。检查:体温39℃,一般情况差,右颌下皮肤红,皮温高,压痛明显,触有波动感,肿胀无明显界限;舌下肉阜无红肿,导管口无溢脓,右下第一磨牙残根,叩痛(++)。X线片见根尖周X线透射区。该患者最可能的诊断是
治疗风劳病代表方剂是
线路通过泥石流时,工程地质的选线原则有()。
在一般砌体结构房屋中,墙的造价占全部建筑造价的()。
隧道管片连接螺栓紧固的施工要点有()。
如何区分万能外圆磨床与普通外圆磨床?
教师在教育工作中要做到循序渐进,这是因为()。
给定程序MODIl.C中函数fun的功能是:计算S=f(-n)+f(一n+1)+…+f(0)+f(1)+f(2)+…+f(n)的值。例如,当n为5时,函数值应为:10.407143。f(x)函数定义如下:请改正程序中的错误,使程序能
A、Theywanttolearnaboutrabbits.B、Theyliketobringintheirchildren.C、Theylovetheanimalsinhercafe.D、Theygiveher
最新回复
(
0
)