首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设η1,η2,η3为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用η1,η2,η3线性表示,并且r(A)=n-3,证明η1,η2,η3为AX=0的一个基础解系.
设η1,η2,η3为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用η1,η2,η3线性表示,并且r(A)=n-3,证明η1,η2,η3为AX=0的一个基础解系.
admin
2019-08-12
102
问题
设η
1
,η
2
,η
3
为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用η
1
,η
2
,η
3
线性表示,并且r(A)=n-3,证明η
1
,η
2
,η
3
为AX=0的一个基础解系.
选项
答案
因为r(A)=n-3,所以AX=0的基础解系包含3个解.设γ
1
,γ
2
,γ
3
是AX=0的一个基础解系,则条件说明γ
1
,γ
2
,γ
3
可以用η
1
,η
2
,η
3
线性表示.于是有下面的关于秩的关系式: 3=r(γ
1
,γ
2
,γ
3
)≤r(η
1
,η
2
,η
3
;γ
1
,γ
2
,γ
3
)=r(η
1
,η
2
,η
3
)≤3, 从而 r(γ
1
,γ
2
,γ
3
)=r(η
1
,η
2
,η
3
;γ
1
,γ
2
,γ
3
)=r(η
1
,η
2
,η
3
), 这说明η
1
,η
2
,η
3
和γ
1
,γ
2
,γ
3
等价,从而η
1
,η
2
,η
3
也都是AX=0的解;又r(η
1
,η
2
,η
3
)=3,即η
1
,η
2
,η
3
线性无关,因此是AX=0的一个基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/80N4777K
0
考研数学二
相关试题推荐
已知y1=3,y2=3+x2,y3=3+ex.是二阶线性非齐次方程的解,求方程通解及方程.
微分方程(y2+x)dx一2xydy=0的通解为______.
已知三角形周长为2p,求出这样一个三角形,使它绕自己的一边旋转时体积最大.
设x1=10.(n=1,2,…),试证数列{xn}极限存在,并求此极限.
设n维列向量组α1,α2,…,αn线性无关,P为n阶方阵,证明:向量组Pα1,Pα2,…,Pαm线性无关|P|≠0.
(18)已知a是常数,且矩阵A=可经初等列变换化为矩阵B=(1)求a;(2)求满足AP=B的可逆矩阵P.
设有线性方程组(1)证明:当a1,a2,a3,a4两两不等时,此方程组无解;(2)设a1=a3=k,a=a=-k(k≠0)时,方程组有解β1=(-1,1,1)T,β2=(1,1,-1)T,写出此方程组的通解.
设c1,c2,…,cn均为非零实常数,A=(aij)n×n为正定矩阵,令bij=aijcicj(i,j=1,2,…,n),矩阵B=(bij)n×n,证明矩阵B为正定矩阵.
设二元函数计算二重积分
设试问当α取何值时,f(x)在点x=0处(1)连续;(2)可导;(3)一阶导数连续;(4)二阶导数存在.
随机试题
纽曼将护理程序分为()
“挟泰山以超北海,语人曰吾不能,是诚不能也。为长者折枝,语人曰吾不能,是不为也,非不能也。”《孟子》中的这段话启示我们,做事情时要区分可能性和不可能性,二者的区别在于()
严重的化脓性感染的病人,使用广谱抗生素治疗2周后,出现败血症表现。可能的致病菌是
二尖瓣狭窄的心脏体征可有
铁剂治疗缺铁性贫血有效的最早期指标是()
资信评级机构从事对公司债券的资信评级业务,应当向()申请取得证券评级业务许可。
企业按规定计算应缴纳的下列税种中,不在“应交税费”科目核算的有()。
下列程序执行后输出的结果是【】。f(intA){staticc=0;c=a+c++;return(c);}main(){inta=2,i,k;
对“助学贷款发放情况表”的工作表内的数据清单内容按主要关键字“贷款金额”的降序次序和次要关键字;“班别”的升序次序进行排序。工作表名不变,保存EXCEL.XLSX工作簿。
ProgrammingforSunday,March2611:30A.M.Ch4BusinessReviewAreviewofthisweek’sbusinessnews.Thisweek’s
最新回复
(
0
)