首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设η1,η2,η3为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用η1,η2,η3线性表示,并且r(A)=n-3,证明η1,η2,η3为AX=0的一个基础解系.
设η1,η2,η3为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用η1,η2,η3线性表示,并且r(A)=n-3,证明η1,η2,η3为AX=0的一个基础解系.
admin
2019-08-12
83
问题
设η
1
,η
2
,η
3
为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用η
1
,η
2
,η
3
线性表示,并且r(A)=n-3,证明η
1
,η
2
,η
3
为AX=0的一个基础解系.
选项
答案
因为r(A)=n-3,所以AX=0的基础解系包含3个解.设γ
1
,γ
2
,γ
3
是AX=0的一个基础解系,则条件说明γ
1
,γ
2
,γ
3
可以用η
1
,η
2
,η
3
线性表示.于是有下面的关于秩的关系式: 3=r(γ
1
,γ
2
,γ
3
)≤r(η
1
,η
2
,η
3
;γ
1
,γ
2
,γ
3
)=r(η
1
,η
2
,η
3
)≤3, 从而 r(γ
1
,γ
2
,γ
3
)=r(η
1
,η
2
,η
3
;γ
1
,γ
2
,γ
3
)=r(η
1
,η
2
,η
3
), 这说明η
1
,η
2
,η
3
和γ
1
,γ
2
,γ
3
等价,从而η
1
,η
2
,η
3
也都是AX=0的解;又r(η
1
,η
2
,η
3
)=3,即η
1
,η
2
,η
3
线性无关,因此是AX=0的一个基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/80N4777K
0
考研数学二
相关试题推荐
设4元线性方程组(Ⅰ)为又已知某齐次线性方程组(Ⅱ)的通解为k1(0,1,1,0)+k2(-1,2,2,1).(1)求线性方程组(Ⅰ)的基础解系;(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
设f(u,v)具有二阶连续偏导数,且满足fu’(u,v)+fv’(u,v)=uv求y=e-2xf(x,x)所满足的一阶微分方程,并求其通解.
求二阶常系数线性微分方程y"+λy’=2x+1的通解,其中λ为常数.
设f(x)在区间(一∞,+∞)内连续,且当x(1+x)≠0时,讨论f(x)的单调区间、极值.
求极限:
设f(x1,x2,…,xn)=XTAX是正定二次型.证明:举例说明上述条件均不是f(x1,x2,…,xn)正定的充分条件.
设数列{xn}满足0<x1<1,ln(1+xn)=exn+1一1(n=1,2,…).证明当0<x<1时,ln(1+x)<x<ex一1;
微分方程满足初值条件y(0)=0,的特解是___________.
微分方程y"一2y’+y=ex的特解形式为(其中A,B,C,D为常数)()
随机试题
生用活血通经,炒炭凉血止血的药物是
博學之,審問之,慎思之,明辨之,篤行之。篤:
常规的B型超声是指
女性,30岁,颈部增粗,伴食欲亢进、消瘦、手颤、怕热、多汗半年,以原发性甲亢收入院。查体:眼球突出,眼裂增大,双侧甲状腺弥漫性肿大,质软、可触及震颤,闻及血管杂音。血压140/90mmHg,脉搏120次/分,准备手术治疗。该患者术前准备必须应用的药物是
慢粒最突出的体征为
8月6日18时,驾驶员甲驾驶装满液氯的槽罐车驶入某高速公路B56段,20时许,槽罐车与驾驶员乙驾驶的货车相撞,导致槽罐车撞坏,槽罐破裂,液氯泄露,造成除驾驶员甲之外的两车其他人员全部死亡。撞车事故发生后,驾驶员甲不顾槽罐车严重损坏,液氯已开始外泄的危险情况
根据《票据法》规定,允许背书转让的票据有( )。
把f(x,y)dxdy写成极坐标的累次积分,其中D={(x,y)|0≤x≤1,0≤y≤x}.
Onewayofimprovingone’swritingistogetintothehabitofkeepingarecordofyourobservations,ofstoring【46】inanote-b
Parents’Homework:FindPerfectTeachersforKidsTomiHalldidwhatshecouldtolobbyforthebestteachersforhertwoch
最新回复
(
0
)