已知A,B为三阶非零矩阵,且A=。β1=(0,1,一1)T,β2=(0,2,1)T,β3=(6,1,0)T是齐次线性方程组Bx=0的三个解向量,且AX=β3有解。求 求Bx=0的通解。

admin2018-02-07  22

问题 已知A,B为三阶非零矩阵,且A=。β1=(0,1,一1)T,β2=(0,2,1)T,β3=(6,1,0)T是齐次线性方程组Bx=0的三个解向量,且AX=β3有解。求
求Bx=0的通解。

选项

答案因为B≠O,所以r(B)≥1,则3一r(B)≤2。又因为β1,β2是Bx=0的两个线性无关的解,故3一r(β)≥2,故r(β)=1所以β1,β2是Bx=0的一个基础解系,于是Bx=0的通解为 x=k1β1+k2β2,其中k1,k2为任意常数。

解析
转载请注明原文地址:https://kaotiyun.com/show/OHk4777K
0

最新回复(0)