首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(08年)设f(χ)是周期为2的连续函数. (Ⅰ)证明对任意的实数t,有∫tt+2f(χ)dχ=∫02f(χ)dχ; (Ⅱ)证明G(χ)=∫0χ[2f(t)-∫tt+2f(s)ds]dt是周期为2的周期函数.
(08年)设f(χ)是周期为2的连续函数. (Ⅰ)证明对任意的实数t,有∫tt+2f(χ)dχ=∫02f(χ)dχ; (Ⅱ)证明G(χ)=∫0χ[2f(t)-∫tt+2f(s)ds]dt是周期为2的周期函数.
admin
2021-01-25
89
问题
(08年)设f(χ)是周期为2的连续函数.
(Ⅰ)证明对任意的实数t,有∫
t
t+2
f(χ)dχ=∫
0
2
f(χ)dχ;
(Ⅱ)证明G(χ)=∫
0
χ
[2f(t)-∫
t
t+2
f(s)ds]dt是周期为2的周期函数.
选项
答案
(Ⅰ)由积分的性质知,对任意的实数t, ∫
t
t+2
f(χ)dχ=∫
t
0
f(χ)dχ+∫
0
2
f(χ)dχ+∫
2
t+2
f(χ)dχ 令s=χ-2,则有 ∫
2
t+2
f(χ)dχ=∫
0
t
f(s+2)ds=∫
0
t
f(s)ds=-∫
t
0
f(χ)dχ 所以∫
t
t+2
f(χ)dχ=∫
t
0
f(χ)dχ+∫
0
2
f(χ)dχ-∫
t
0
f(χ)dχ=∫
0
2
f(χ)dχ (Ⅱ)由于∫
t
t+2
f(s)ds-∫
0
2
f(s)ds 记∫
0
2
f(s)ds=a 则G(χ)=2∫
0
χ
f(t)dt-aχ 因为对任意的χ, G(χ+2)-G(χ)=2∫
0
χ+2
f(t)dt-a(χ+2)-2∫
0
χ
f(t)dt+aχ =2∫
χ
χ+2
f(t)dt-2a=2∫
0
2
f(t)dt-2a=0, 所以,G(χ)是周期为2的周期函数.
解析
转载请注明原文地址:https://kaotiyun.com/show/OSx4777K
0
考研数学三
相关试题推荐
设f(x)是连续函数,且0x3-1f(t)dt=x,则f(7)=________.
已知X1,X2,X3相互独立且服从N(0,σ2),则服从的分布及参数为________.
设f(x)在[0,1]上连续可导,f(1)=0,,证明:存在ξ∈[0,1],使得f’(ξ)=4.
差分方程yx+1-3yx=2·3x的通解为.
设总体X的密度函数为其中θ>0为未知参数,(X1,X2,…,Xn)为来自总体X的简单随机样本,求参数θ的矩估计量和极大似然估计量.
某产品的成本函数为C(q)=aq2+bq+c,需求函数为q=(β一p),其中c>0为固定成本,a,b,α,β均为正常数,β>b,q为需求量(需求量等于产量),p为该产品的单价.求产量q为何值时,利润最大?
(1988年)过曲线y=x2(x≥0)上某点A作一切线.使之与曲线及z轴围成图形的面积为,求:(1)切点A的坐标.(2)过切点A的切线方程;(3)由上述图形绕z轴旋转而成旋转体体积V.
[2013年]设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记若α,β正交且均为单位向量,证明厂在正交变换下的标准形为2y12+y22.
在函数中当x→0时极限f(x)不存在的是
(2000年)设A,B是两个随机事件,随机变量试证明随机变量X和Y不相关的充分必要条件是A与B相互独立。
随机试题
简述χ2检验的目的。
患者,男,43岁,患"急性肝炎"。症见一身面目俱黄,黄色鲜明,如橘子皮色,口渴,腹满,小便短赤,舌苔黄腻,脉滑数者。治宜选用
哪项与急性粒细胞白血病的诊断不符
A.细动脉玻璃样变性B.细动脉纤维化C.细动脉淀粉样变性D.细动脉纤维素样坏死E.细动脉纤维素样变性属于血源播散性肺结核的是
2015年印发的《国家安全监管总局特别重大生产安全事故调查处理工作程序》规定,特别重大事故调查处理的工作程序包括()。
以下名画中哪个是顾恺之的作品?()
人民警察在执行公务中使用鸣响警报器和回转警灯的警车,其他车辆应给让道,这体现了行政主体享有()。
升华指一个人将受挫后的心理压抑向符合社会规范的、具有建设性意义的方向抒发的心理反应。根据上述定义,下列属于升华的是:
讨论级数(α,β为常数)的敛散性,若收敛,指出是条件收敛还是绝对收敛,并说明理由.
下面是关于8259A可编程中断控制器的叙述,其中错误的是
最新回复
(
0
)