首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2006年] 设三阶实对称矩阵A的各行元素之和为3.向量α1=[-1,2,-1]T,α2=[0,-1,1]T都是齐次线性方程组AX=0的解.求A的特征值和特征向量.
[2006年] 设三阶实对称矩阵A的各行元素之和为3.向量α1=[-1,2,-1]T,α2=[0,-1,1]T都是齐次线性方程组AX=0的解.求A的特征值和特征向量.
admin
2021-01-25
160
问题
[2006年] 设三阶实对称矩阵A的各行元素之和为3.向量α
1
=[-1,2,-1]
T
,α
2
=[0,-1,1]
T
都是齐次线性方程组AX=0的解.求A的特征值和特征向量.
选项
答案
由命题2.5.1.3知,三阶矩阵A有一个特征值3,且α
3
=[1,1,1]
T
为A的属于特征值3的特征向量. 或由[*]知,3是A的一个特征值,α
3
=[1,1,1]
T
为A的属于特征值3的特征向量,则A的属于特征值3的所有特征向量为c
1
α
2
,c
1
为不等于0的任意常数. 又由命题2.5.1.10知,α
1
,α
2
是A的属于特征值0的特征向量,或由Aα
1
=0α
1
,Aα
2
= 0α
2
也可看出这一点,所以A的特征值为3,0,0,且属于λ=0的特征向量为 k
1
α
1
+k
2
α
2
=k
1
[-1,2,-1]
T
+k
2
[0,-1,1]
T
(k
1
,k
2
为不全为0的常数). 注:命题2.5.1.1 λ
0
是矩阵A的特征值当且仅当|λ
0
E-A|=0. 对于数字型矩阵,常用特征方程|λE-A|=0求其特征值λ. 为求特征值λ
i
所对应的所有特征向量,只需解方程组(λ
i
E-A)X=0. 命题2.5.1.10 设α≠0为A
n×n
=0的解,则α为A的属于特征值0的特征向量.
解析
转载请注明原文地址:https://kaotiyun.com/show/2tx4777K
0
考研数学三
相关试题推荐
设f(x)有二阶连续导数,且f’(0)=0,.则()
设f(x)是以l为周期的周期函数,则∫a+kla+(k+1)lf(x)dx之值()
n维向量组(I)α1,α2,…,αr可以用n维向量组(Ⅱ)β1,β2,…,βs线性表示.
设z=,其中函数f可微,则
设(X1,X2,…,Xn)(n≥2)为标准正态总体X的简单随机样本,则().
设随机变量X1,X2,…,Xn(n>1)独立同分布,且其方差σ2>0,令Y=则()
[2013年]设(X,Y)是二维随机变量,X的边缘概率密度为在给定X=x(0<x<1)的条件下,Y的条件概率密度为求P(X>2y).
设则A-1=__________.
设则f’(x)=______.
(1988年)过曲线y=x2(x≥0)上某点A作一切线.使之与曲线及z轴围成图形的面积为,求:(1)切点A的坐标.(2)过切点A的切线方程;(3)由上述图形绕z轴旋转而成旋转体体积V.
随机试题
患者,男性,40岁,多年来全口牙反复肿胀,曾做过多次治疗,近5~6天再次加重。检查全口牙龈肿,充血,触之出血,肿胀明显,牙周袋超过5mm,压溢脓,X线检查,全口多数牙槽骨有不同程度吸收,无龋。全身乏力,饮食量比一般人大,尿量也多。在下列项目中特别需要检
WHO推荐使用的口服补液盐的钾浓度及液体张力为钾张力
下列有关鉴定的情形中,属于可以申请重新鉴定的有()。
【真题(初级)】按照我国有关法规的规定,企业的税后利润可用于()。
童年儿童游戏属于()。
某县打算在县中心城区建设一个城市广场,决定作出后,县政府成立了由副县长为组长、15人组成的城市广场建设领导指挥办公室,购置各种办公设备花费20万元。然后开始进行拆迁工作,动用3000元安置被迁居民、商户,又请专家进行规划设计,花费了400万元。为了建设一个
根据下面的统计表回答121~125题能源消费构成中,从1981年到1986年变化比例最大的是()。
求
Thoughnotbiologicallyrelated,friendsareas"related"asfourthcousins,sharingabout1%ofgenes.Thatis【C1】______astudy
Onesummernight,onmywayhomefromworkIdecidedtoseeamovie.IknewthetheatrewouldbeairconditionedandIcouldn’tf
最新回复
(
0
)