首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在x=a处n(n≥2)阶可导,且当x→a时f(x)是x-a的n阶无穷小,求证:f(x)的导函数f’(x)当→a时是x-a的a-1阶无穷小.
设f(x)在x=a处n(n≥2)阶可导,且当x→a时f(x)是x-a的n阶无穷小,求证:f(x)的导函数f’(x)当→a时是x-a的a-1阶无穷小.
admin
2018-06-27
52
问题
设f(x)在x=a处n(n≥2)阶可导,且当x→a时f(x)是x-a的n阶无穷小,求证:f(x)的导函数f’(x)当→a时是x-a的a-1阶无穷小.
选项
答案
f(x)在x=a可展开成 f(x)=f(a)+f’(a)(x-a)+[*]f’’(a)(x-a)
2
+…+[*]f
(n)
(a)(x-a)
n
+o((x-a)
n
)(x→a). 由x→a时f(x)是(x-a)的n阶无穷小[*] (a)=f’(a)=…=f
(n-1)
(a)=0,f
(n)
(a)≠0. 又f(x)在x=a邻域(n-1)阶可导,f
(n-1)
(x)在x=a可导. 由g(x)=f’(x)在x=a处n-1阶可导[*] g(x)=g(a)+g’(a)(x-a)+…+[*]g
(n-1)
(a)(x-a)
n-1
+o((x-a)
n-1
), 即f’(x)=f’(a)+f’’(a)(x-a)+…+[*]f
(n)
(a)(x-a)
n-1
+o((x-a)
n-1
) =[*]f
(n)
(a)(x-a)
n-1
+o((x-a)
n-1
). 因此f’(x)是x-a的n-1阶无穷小(x→a).
解析
转载请注明原文地址:https://kaotiyun.com/show/Opk4777K
0
考研数学二
相关试题推荐
设随机变量X,Y独立同分布,且X的分布函数为F(x),则Z=max{X,Y}的分布函数为().
设A为n阶实对称矩阵,f(A)=n,Aij是A=(aij)n×m中元素aij(i,j=1,2,…,n)的代数余子式,二次型f(x1,x2,…,xn)=(Ⅰ)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x
设λ0是n阶矩阵A的特征值,且齐次线性方程组(λ0E-A)X=0的基础解系为η1,η2,则A的属于λ0的全部特征向量为().
设(a为常数),则
设δ>0,f(x)在(一δ,δ)有连续的三阶导数,f’(0)=f’’(0)=0且.则下列结论正确的是
求二元函数z=f(x,y)=x2y(4-x-y)在由直线x+y=6、x轴和y轴所围成的闭区域D上的极值、最大值与最小值.
设当x→0时,sin(sin2x)ln(1+x2)是比xsinxn高阶无穷小,而xsinxn是比(ex2-1)高阶无穷小.则正整数n=().
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又B=且AB=O,求方程组Ax=0的通解.
设A为三阶矩阵,且|A|=4,则=_______
用泰勒公式求下列极限:
随机试题
给某患者静脉注射25%葡萄糖溶液100ml,患者顷刻尿量显著增加,测定尿糖为阳性,分析患者尿量增多的主要原因是
按照《建筑地基基础设计规范》(GB50007—2011),地基持力层承载力特征值由经验值确定时,下列哪些情况,不应对地基承载力特征值进行深宽修正?()
某企业月末编制试算平衡表时,因漏算一个账户,计算的月末借方余额合计为400000元,月末贷方余额合计为450000元,则漏算的账户()元。
产业结构政策的核心是()。
“三个代表”是一个完整统一的整体,请简述三者之间的辩证关系。
你们部门负责生产安全监察工作。你带队去一个企业检查工作。发现该企业存在严重的安全问题。企业负责人对你说,如果停产,企业的订单和职工工资会受到影响。如果是你,你该怎么处理?
水平放置的幼苗,经过一段时间根向下弯曲生长,其原因是__________。①重力作用,背离地面一侧生长素分布得少②光线作用,靠近地面一侧生长素分布得多③根对生长素反应敏感④根对生长素反应不敏感
设A=E-ααT,其中α为n维非零列向量.证明:当α是单位向量时A为不可逆矩阵.
(73)are essential for the protection of data.
A、Themanwondershowcriticswillreviewtheshow.B、Themanwillhelpthewomansellherpaintings.C、Thewomanisconfidenti
最新回复
(
0
)