首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在x=a处n(n≥2)阶可导,且当x→a时f(x)是x-a的n阶无穷小,求证:f(x)的导函数f’(x)当→a时是x-a的a-1阶无穷小.
设f(x)在x=a处n(n≥2)阶可导,且当x→a时f(x)是x-a的n阶无穷小,求证:f(x)的导函数f’(x)当→a时是x-a的a-1阶无穷小.
admin
2018-06-27
48
问题
设f(x)在x=a处n(n≥2)阶可导,且当x→a时f(x)是x-a的n阶无穷小,求证:f(x)的导函数f’(x)当→a时是x-a的a-1阶无穷小.
选项
答案
f(x)在x=a可展开成 f(x)=f(a)+f’(a)(x-a)+[*]f’’(a)(x-a)
2
+…+[*]f
(n)
(a)(x-a)
n
+o((x-a)
n
)(x→a). 由x→a时f(x)是(x-a)的n阶无穷小[*] (a)=f’(a)=…=f
(n-1)
(a)=0,f
(n)
(a)≠0. 又f(x)在x=a邻域(n-1)阶可导,f
(n-1)
(x)在x=a可导. 由g(x)=f’(x)在x=a处n-1阶可导[*] g(x)=g(a)+g’(a)(x-a)+…+[*]g
(n-1)
(a)(x-a)
n-1
+o((x-a)
n-1
), 即f’(x)=f’(a)+f’’(a)(x-a)+…+[*]f
(n)
(a)(x-a)
n-1
+o((x-a)
n-1
) =[*]f
(n)
(a)(x-a)
n-1
+o((x-a)
n-1
). 因此f’(x)是x-a的n-1阶无穷小(x→a).
解析
转载请注明原文地址:https://kaotiyun.com/show/Opk4777K
0
考研数学二
相关试题推荐
设3阶矩阵t为何值时,矩阵A,B等价?说明理由.
设b为常数.设L与l从x=1延伸到x→+∞之间的图形的面积八为有限值,求b及A的值.
设函数f(x)在区问(0,+∞)上可导,且f’(x)>0求F(x)的单调区间,并求曲线y=F(x)的图形的凹凸区间及拐点坐标
设函数f(x)=,则f(x)在(-∞,+∞)内().
设A为三阶矩阵,α1,α2,α3;是线性无关的三维列向量,且满足Aα1=α1,α2,α3;,Aα2=2α2+α3,Aα3=2α2+3α3.求矩阵A的特征值;
设n阶矩阵A非奇异(n≥2),A*是矩阵A的伴随矩阵,则().
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0.(1)写出f(x)的带拉格朗日余项的一阶麦克劳林公式;(2)证明在[-a,a]上至少存在一点η,使a3f"(η)=3∫-aaf(x)dx.
求极限
设三阶实对称阵A的特征值为1,2,3,A的属于特征值1,2的特征向量分别是ξ1=[一1,一1,1]T,ξ2=[1,一2,一1]T,求A.
求f(χ)=3χ带拉格朗日余项的n阶泰勒公式.
随机试题
枳实薤白桂枝汤中桂枝的作用
A.肝气上逆证B.胃气上逆证C.肺气上逆证D.肾气不固证E.脾气下陷证
A、禁止使用肟类复能剂B、不宜用肥皂水清洗皮肤C、静注毒扁豆碱D、及早大量使用维生素B6E、用解氟灵异烟肼中毒()。
费德勒认为影响领导方式有效性的情境因素包括()。
2008年北京奥运会上争夺奖牌的事实,使我们明白了一个道理:在失败还未成为最后的事实时,决不能轻易接受失败!在胜利尚存一丝微弱的希望时,仍要拼尽全力去争取胜利!否则,就不是真正的强者。由上述题干可推出以下哪个选项?
陕西出土的秦始皇兵马俑,其表面涂有生漆和彩绘,这为研究秦代军人的服色提供了重要信息。但兵马俑出土后,表面的生漆会很快发生翘皮和卷曲,造成整个彩绘层脱落,因此,必须用防护液和单体渗透两套方法进行保护,否则不能供研究使用。而一旦采用这两套方法对兵马俑进行保护,
组成计算机硬件系统的基本部分是()。
Whatdoesthewomanwantthemantodo?
A、Onlybreakfast.B、Onlylunch.C、Onlysupper.D、Alloftheabove.C由第二段中“Thesecartsservedlate-nightworkerswhowantedacup
DevelopinganAdvertisingCampaignGenerallyspeaking,fourmajorstepsareinvolvedinthedevelopmentofanadvertisingca
最新回复
(
0
)