首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m×n实矩阵,E为n阶单位矩阵.已知矩阵B=λE+ATA.证明:当λ>0时,矩阵B为正定矩阵.
设A为m×n实矩阵,E为n阶单位矩阵.已知矩阵B=λE+ATA.证明:当λ>0时,矩阵B为正定矩阵.
admin
2016-09-19
71
问题
设A为m×n实矩阵,E为n阶单位矩阵.已知矩阵B=λE+A
T
A.证明:当λ>0时,矩阵B为正定矩阵.
选项
答案
用定义证明.显然B为对称矩阵.对[*]χ≠0,当λ>0时有 χ
T
Bχ=λχ
T
χ+χ
T
A
T
Aχ=λχ
T
χ+(Aχ)
T
(Aχ)=λ‖χ‖
2
+‖Aχ‖
2
>0. 故B为正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/OtT4777K
0
考研数学三
相关试题推荐
血液试验ELISA(enzyme-linkedimmunosorbentassay,酶联免疫吸附测定)是现今检验艾滋病病毒的一种流行方法.假定ELISA试验能正确测出确实带有病毒的人中的95%存在艾滋病病毒,又把不带病毒的人中的1%不正确地识别为存
假设E,F是两个事件,(1)已知P(E)=0.4,P(F)=0.6,P(E∪F)=0.8,计算P(E|F)和P(F|E);(2)已知P(E)=0.3,P(F)=0.5,P(E|F)=0.4,计算P(E∩F),P(E∪F),P(F|E).
A,B是两个事件,则下列关系正确的是().
利用函数的凹凸性,证明下列不等式:
已知级数,则:(1)写出级数的第五项和第九项u5,u9;(2)计算出部分和S3,S10;(3)写出前几项部分和Sn的表达式;(4)用级数收敛的定义验证该级数收敛,并求和.
设n元二次型f(x1,x2,…,xn)=XTAX,其中AT=A.如果该二次型通过可逆线性变换X=CY可化为f(y1,y2,…,yn)=YTBY,则以下结论不正确的是().
假设随机变量X1、X2、X3、X4相互独立,且同分布,P{Xi=0}=0.6,P{Xi=1}=0.4(i=1,2,3,4),求行列式的概率分布.
设F1(x)与F2(x)分别为随机变量,X1与X2的分布函数,为使F(x)=aF1(x)-bF2(x)是某一随机变量的分布函数,在下列给定的各组数值中应取().
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.证明B可逆;
随机试题
Readingisthoughttobeakindofconversationbetweenthereaderandthetext.Thereaderputsquestions,asitwere,tothet
去年以来,全国许多主要城市的房地产价格出现不同幅度的增长,有些城市甚至创出近期新高。这是自去年国家出台一系列调控措施后,房地产价格再次出现上涨。这也使社会舆论再次就经济是否过热展开了争论。在此背景下,有人认为,国家去年出台的宏观调控措施未达到预期效果。以
下列不属于时间估算中可以利用的历史资料是()。
纳税人享受减税、免税待遇的,在减税、免税期间可以暂不办理纳税申报。()
当学生获得好的成绩后,老师和家长给予表扬和鼓励,这符合桑代克学习规律中的()。
空调:遥控器:电视
执法为民是社会主义法治的本质要求。下列哪一做法不符合执法为民的理念?
红色政权能够存在和发展的客观条件有
Therewasachildreadytobeborn.SoheaskedGod,"TheytellmeyouaresendingmetotheearthbuthowamIgoingtoliveth
DietingadvisorDr.RobertAtkinsrecommendseatingadiethighinproteinforthosewhowanttoloseweightandkeepitoff.Th
最新回复
(
0
)