首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设b>a>0,f(x)在[a,b]上连续,单调递增.且f(x)>0,证明:存在点ξ∈(a,b)使得a2f(b)+b2f(a)=2ξ2f(ξ).
设b>a>0,f(x)在[a,b]上连续,单调递增.且f(x)>0,证明:存在点ξ∈(a,b)使得a2f(b)+b2f(a)=2ξ2f(ξ).
admin
2017-07-26
55
问题
设b>a>0,f(x)在[a,b]上连续,单调递增.且f(x)>0,证明:存在点ξ∈(a,b)使得a
2
f(b)+b
2
f(a)=2ξ
2
f(ξ).
选项
答案
令F(x)=2x
2
f(x)一a
2
f(b)一b
2
f(a). 显然F(x)在[a,b]上连续 且 F(a)=a
2
[f(a)一f(b)]+f(a)(a
2
一b
2
)<0, F(b)=f(b)(b
2
一a
2
)+b
2
[f(b)一f(a)]>0. 由零点定理,至少存在一个点ξ∈[a,b]使得F(ξ)=0, 即 a
2
f(b)+b
2
f(a)=2ξ
2
f(ξ).
解析
作辅助函数F(x)=2x
2
f(x)一a
2
f(b)一b
2
f(a),F(x)在[a,b]上用零点定理.
转载请注明原文地址:https://kaotiyun.com/show/OuH4777K
0
考研数学三
相关试题推荐
设A为3阶矩阵,α。,α为A的分别属于特征值-1,1的特征向量,向量α满足Aα3=α2+α3,(I)证明α1,α2,α3线性无关;(Ⅱ)令P=(α11,α2,α3),求P-1AP.
设A为n阶矩阵,对于齐次线性方程(I)An=0和(Ⅱ)An+1x=0,则必有
函数f(μ,ν)由关系式f[xg(y),y]=x+g(y)确定,其中函数g(y)可微,且g(y)≠0,则=_____________.
设A是n阶反对称矩阵,证明:如果λ是A的特征值,那么一λ也必是A的特征值.
设A是n阶反对称矩阵,举一个4阶不可逆的反对称矩阵的例子;
设向量组a1,a2,a3线性相关,向量组a2,a3,a4线性无关,问:(Ⅰ)a1能否由a2,a3,线性表出?证明你的结论.(Ⅱ)a4能否由a1,a2,a3铴线性表出?证明你的结论.
设随机变量X的概率密度为F(x)是X的分布函数.求随机变量Y=F(X)的分布函数.
μ(x,y)=x2-xy+y2,L为抛物线y=x2自原点至点A(1,1)的有向弧段n为L的切向量顺时针旋转π/2角所得的法向量为函数μ沿法向量n的方向导数,计算
设A为n阶非零矩阵,A*是A的伴随矩阵,AT是A的转置矩阵,当A*=AT时,证明丨A丨≠0.
随机试题
临床上所指的黄疸是指血清总胆红素超过
对CT机的X线管阳极热容量的描述,错误的是
某女,50岁,体胖,患高血压病,证属脾虚湿盛、痰浊内阻,证见眩晕,头痛,如蒙如裹,胸脘闷闷。医师处以半夏天麻丸,此因该成药的()。
下列各项中,属于总分类会计科目的是()。
根据《公司法》的规定,股份有限公司的下列文件中,股东有权要求查阅的有()。
业主委员会委员除了要符合当选委员的条件外,如果有()的,经业主大会会议通过,其业主委员会委员的资格应当终止。
下列属于旅游合同标的的是()。
所谓社会投资,是指通过公共投入的方式去增大()和发展各项社会事业。
曲线y=(x≤1)的长度是
求极限.
最新回复
(
0
)