首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知随机变量X的概率密度为f(x)=Aex(B-x)(一∞<x<+∞),且E(X)=2D(X).试求: (Ⅰ)常数A,B之值; (Ⅱ)E(X2+eX); (Ⅲ))Y=|(X一1)|的分布函数F(y).
已知随机变量X的概率密度为f(x)=Aex(B-x)(一∞<x<+∞),且E(X)=2D(X).试求: (Ⅰ)常数A,B之值; (Ⅱ)E(X2+eX); (Ⅲ))Y=|(X一1)|的分布函数F(y).
admin
2016-10-26
77
问题
已知随机变量X的概率密度为f(x)=Ae
x(B-x)
(一∞<x<+∞),且E(X)=2D(X).试求:
(Ⅰ)常数A,B之值;
(Ⅱ)E(X
2
+e
X
);
(Ⅲ))Y=|
(X一1)|的分布函数F(y).
选项
答案
(Ⅰ)由X~N[*]且E(X)=2D(X),得到E(X)=[*]=2D(X)=1,即B=2. 而[*] (Ⅱ)E(X
2
+e
X
)=E(X
2
)+E(e
X
).而 E(X
2
)=D(X)+[E(X)]
2
=[*] [*] 所以 E(X
2
+e
X
)=[*] (Ⅲ)由于X~N(1,[*](X一1)~N(0,1). 显然,当y<0时,F(y)=0;当y≥0时, [*] 其中Ф(y)为标准正态分布的分布函数.
解析
f(x)=Ae
x(B-x)
=Ae
-x
2
+Bx)
=
,可以将f(x)看成正态分布N
的概率密度函数.
转载请注明原文地址:https://kaotiyun.com/show/P1u4777K
0
考研数学一
相关试题推荐
[*]
利用数学期望的性质,证明方差的性质:(1)Da=0;(2)D(X+a)+DX;(3)D(aX)=a2DX.
已知函数y=sinx的图形,作函数y=2sin﹙2x-π/2﹚的图形.
证明:(1)周长一定的矩形中,正方形的面积最大;(2)面积一定的矩形中,正方形的周长最小。
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设α1,α2,…,αs是一组n维向量,则下列结论中,正确的是().
某化肥厂生产某产品1000吨,每吨定价为130元,销售量在700吨以内时,按原价出售,超过700吨时,超过的部分打九折出售,试将销售总收益与总销售量的函数关系用数学表达式表出.
(1994年)设求在的值.
随机试题
A.细动脉壁玻璃样变性B.细动脉壁纤维素样坏死C.小动脉内膜纤维化D.小血管内纤维素样血栓形成(2010年第138题)慢性排斥反应的基本病变是
患儿,11个月。腹腔感染后形成肠瘘,在治疗过程中为增加机体营养,提高抵抗力,使胃肠道休息,采用哪项最为适宜
提出“止血、消瘀、宁血、补血”治血四法的医著是()
法院受理甲出版社、乙报社著作权纠纷案,判决乙赔偿甲10万元,并登报赔礼道歉。判决生效后,乙交付10万元,但未按期赔礼道歉,甲申请强制执行。执行中,甲、乙自行达成口头协议,约定乙免于赔礼道歉,但另付甲1万元。关于法院的做法,下列哪一选项是正确的?(2010年
某项目厂区占地面积为60000m2,其中,构筑物占地面积3600m2,道路和广场占地面积22800m2,建筑物占地面积12000m2,绿化面积18000m2,露天堆场面积3600m2,经计算,该项目的建筑系数为()。
下列有关重大错报风险的说法中,错误的是()。(2019年)
以下关于主刑制度的理解,正确的是()。
甲表示将赠与乙一台佳能相机,乙欣然表示接受。几日后,甲告诉乙,他不想将相机赠给乙,因为该相机已经赠给丙。则()。
在网络协议的各层中相邻层之间的联系是【 】的关系。
叙述中错误的是()。
最新回复
(
0
)