首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
在第一象限的椭圆上求一点,使过该点的法线与原点的距离最大.
在第一象限的椭圆上求一点,使过该点的法线与原点的距离最大.
admin
2021-08-02
76
问题
在第一象限的椭圆
上求一点,使过该点的法线与原点的距离最大.
选项
答案
设g(x,y)=[*],则有[*] 因为椭圆上任意一点(x,y)处的法线方程为[*],所以原点到该法线的距离为 [*] 记f(x,y)=[*],x>0,y>0,约束条件为g(x,y)=[*],构造拉格朗日函数h(x,y,λ)=f(x,y)+λg(x,y). 根据条件极值的求解方法,先求 [*] 令[*],得联立方程组: [*] 由①式得λ=[*];由②式得λ=[*].所以有[*] 代入③式得[*],则有[*] 根据实际问题,与原点距离最大的法线是存在的,驻点只有一个,所得即所求,故可断定所求的点为[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/jXy4777K
0
考研数学二
相关试题推荐
已知y1=xex+e2x和y2=xex+e一x是二阶常系数非齐次线性微分方程的两个解,则此方程为()
如图1-3-1,连续函数y=f(x)在区间[一3,一2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[一2,0],[0,2]的图形分别是直径为2的下、上半圆周。设F(x)=∫0xf(t)dt,则下列结论正确的是()
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是()
具有特解y1=e—x,y2=2xex,y3=3ex的三阶常系数齐次线性微分方程是()
若曲线y=χ2+aχ+b与曲线2y=-1+χy2在(1,-1)处相切,则().
半圆形闸门半径为R(米),将其垂直放入水中,且直径与水面齐,设水密度ρ=1。若坐标原点取在圆心,x轴正向朝下,则闸门所受压力P为()
在曲线y=(χ-1)2上的点(2,1)处作曲线的法线,由该法线、χ轴及该曲线所围成的区域为D(y>0),则区域D绕χ轴旋转一周所成的几何体的体积为().
设抛物线y=ax2+bx+2lnc过原点,当0≤x≤1时,y≥0,又已知该抛物线与x轴及直线x=1所围图形的面积为1/3.试确定a,b,c,使此图形绕x轴旋转一周而成的旋转体的体积V最小.
设曲线y=,过原点作曲线的切线,求此曲线、切线及χ轴所围成的平面图形绕χ轴旋转一周所成的旋转体的表面积.
设∫xf(x)dx=arcsinx+C,求∫dx/f(x).
随机试题
法国地方市镇行政组织的市长具有两种身份,即()
增感屏的作用是
2019年4月,某市税务机关拟对辖区内某房地产开发公司开发的房地产项目进行土地增值税清算。该房地产开发公司提供该房地产开发项目的资料如下: (1)2017年4月,以8000万元拍得用于该房地产开发项目的一宗土地,并缴纳契税;因闲置1年,支付土
DBM的郭士纳和美国西南航空公司的赫伯都是公司的领导人,其领导情境和领导方式均不同,但都获得了很大成功。领导()理论可以解释这一现象。
下列各项中,不属于业务预算的是()。
为保护少年儿童的社会权利,1989年联合国大会通过了()
在2016年举世瞩目的人机大战中,谷歌围棋人工智能AlphaGo与韩国棋手李世石进行巅峰人机对决,最终AlphaGo以4:1赢得最终胜利。这表明()
文化强则中国强。建设社会主义文化强国是实现中华民族伟大复兴的必然要求,其关键是
Humansnotonlyloveeatingicecream,theyenjoy(1)_____ittotheirpets.Marketstudiesshowthattwothirdsofalldogowne
以下关于拒绝服务攻击的叙述中,不正确的是_______。
最新回复
(
0
)