首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是n阶矩阵,α1,α2,…,αs是n维线性无关向量组,若Aα1,Aα2,…,Aαs线性相关,证明:A不可逆.
已知A是n阶矩阵,α1,α2,…,αs是n维线性无关向量组,若Aα1,Aα2,…,Aαs线性相关,证明:A不可逆.
admin
2018-08-22
19
问题
已知A是n阶矩阵,α
1
,α
2
,…,α
s
是n维线性无关向量组,若Aα
1
,Aα
2
,…,Aα
s
线性相关,证明:A不可逆.
选项
答案
因Aα
1
,Aα
2
,…,Aα
s
线性相关,故存在不全为零的数k
1
,k
2
,…,k
s
,使得 k
1
Aα
1
+k
2
Aα
2
+…+k
s
Aα
s
=0, 即 A(k
1
α
1
+k
2
α
2
+…+k
s
α
s
)=Aξ=0, 其中ξ=k
1
α
1
+k
2
α
2
+…+k
s
α
s
,因已知α
1
,α
2
,…,α
s
线性无关,对任意不全为零的数k
1
,k
2
,…,k
s
,有 ξ=k
1
α
1
+k
2
α
2
+…+k
s
α
s
≠0 而 Aξ=0. 说明线性方程组AX=0有非零解,从而|A|=0,即A是不可逆矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/PGj4777K
0
考研数学二
相关试题推荐
设函数f(x)可导且0≤f’(x)≤(k>0),对任意的x0,作xn+1=f(xn)(n=0,1,2,…),证明:存在且满足方程f(x)=x.
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αS).
微分方程的通解是()
防空洞的截面拟建成矩形加半圆(如图1.2—1),截面的面积为5平方米,问底宽z为多少时才能使建造时所用的材料最省?
求下列积分:
设A是三阶实矩阵,λ1,λ2,λ3是A的三个不同的特征值,ξ1,ξ2,ξ3是三个对应的特征向量,证明:当λ2λ3≠0时,向量组ξ1,A(ξ1+ξ2),A2(ξ1+ξ2+ξ3)线性无关.
设a,b均为常数,a>一2,a≠0,求a,b为何值时,使
对于任意二事件A,B,0<P(A)<1,0<P(B)<1,定义A与B的相关系数为(1)证明事件A,B相互独立的充分必要条件是其相关系数为零;(2)利用随机变量相关系数的基本性质,证明|ρAB|≤1.
设求y’.
设求常数a,使
随机试题
T细胞TCR识别抗原的共受体分子是
我国最主要的税法渊源是__________。
根据《企业内部控制基本规范》的规定,单位内部控制措施主要有()等。
下列关于大连商品交易所玉米期货合约的说法中,正确的有()。
创造良好的环境氛围的具体要求有()。
【2011.江西】人本主义心理学家马斯洛把求知、审美、创造的需要归入()之中。
注意事项1.申论考试是对应考者阅读理解能力、综合分析能力、提出和解决问题能力、文字表达能力的测试。2.作答参考时限:阅读材料50分钟,作答130分钟。3.仔细阅读给定资料,按照后面提出的“作答要求”依次作答。4.考生
设A,B为满足AB=O的任意两个非零矩阵,则必有()
Likeallthehugemetropolisesoftheworld,therearelotsofdiversionsbothoutdoorsandindoorsinChicago.TheArtInstitut
微机的硬件系统中,最核心的部件是()。
最新回复
(
0
)