首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设ψ(x)在[a,b]上连续,且ψ(x)>0,则函数y=φ(x)=∫ab|x一t|ψ(t)dt的图形 ( )
设ψ(x)在[a,b]上连续,且ψ(x)>0,则函数y=φ(x)=∫ab|x一t|ψ(t)dt的图形 ( )
admin
2015-08-14
115
问题
设ψ(x)在[a,b]上连续,且ψ(x)>0,则函数y=φ(x)=∫
a
b
|x一t|ψ(t)dt的图形 ( )
选项
A、在(a,b)内为凸
B、在(a,b)内为凹
C、在(a,b)内有拐点
D、在(a,b)内有间断点
答案
B
解析
先将φ(x)利用|x—t|的分段性分解变形,有 φ(x)=∫
a
x
(x一t)ψ(t)dt+∫
x
b
(t一x)ψ(t)dt=s∫
a
x
ψ(t)dt一∫
a
x
tψ(t)dt+∫
x
b
tψ(t)dt—x∫
x
b
ψ(t)dt.
因为ψ(t)在[a,b]上连续,所以φ(x)可导,因而答案不可能是(D).为讨论其余三个选项,只需求出φ"(x),讨论φ"(x)在(a,b)内的符号即可.因
φ’(x)=∫
a
x
ψ(t)dt一∫
x
b
ψ(t)dt,
φ"(x)=2ψ(x)>0,x∈[a,b],故y=φ(x)的图形为凹.直选(B).
转载请注明原文地址:https://kaotiyun.com/show/eS34777K
0
考研数学二
相关试题推荐
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.(1)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示;(2)设α1=,α2=,β1=,β2=求出可由两组向量同时线性表示的向量.
A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组AX=0与BX=0有公共的非零解.
设A为三阶方阵,A的每行元素之和为5,AX=0的通解为k1求Aβ.
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22-2y32,且A*+2E的非零特征值对应的特征向量为α1=求此二次型.
设随机变量X1,X2,X3,X4互独立且都服从标准正态分布N(0,1),已知,对给定的α(0<α<1),数yα满足P{Y>ya}=α,则有
设3阶实对称矩阵A满足A2=2A,已知二次型f(x1,x2,x3)=xTAx经正交变换x=Qy化为λy22+λy32(λ≠0),其中Q=(b>0,c>0).求矩阵A;
设A是3阶实对称矩阵,二次型f(x1,x2,x3)=xTAx经正交变换x=Qy后的标准形为y12+y22-y32,则二次型g(x1,x2,x3)=xTAA*x经可逆线性变换x=Py后的规范形为()
设A为3阶实对称矩阵,β=(3,3,3)T,方程组Ax=β的通解为k1(-1,2,-1)T+k2(0,-1,1)T+(1,1,1)T(k1,k2为任意常数).求A的特征值和特征向量;
当x→(1/2)+时,a(x)=π-3arccosx与β(x)=a(x-1/2)b是等价无穷小,则()
设f(x,y)可微,f(1,2)=2,fx(1,2)=3,f′y(1,2)=4,φ(x)=f[x,f(x,2x)],则φ′(1)=________.
随机试题
试述杜甫律诗的创作成就。
西方哲学史上首次提出“美本身”问题的美学家是【】
某慢性肺源性心脏病病人,喘憋明显,略有烦躁,在治疗过程中,应慎用镇静药,以避免
城市环境卫生设施工程规划的主要任务有()。①根据城市发展目标和城市布局,确定城市环境卫生配置标准和垃圾集运、处理方式;②合理确定主要环境卫生设施的数量、规模;③科学布局垃圾处理场等各种环境卫生设施,制定环境卫生设施的隔离与防护措施;④提出垃圾回
下列法律关系中的法律事实属于法律行为的是()。
新征用耕地应缴纳的城镇土地使用税,其纳税义务发生时间是()。
从发展的角度看,下面说法中正确的是()。
【2015年重庆开县.判断】制度化教育就是对非制度化教育的全盘否定。()
Evidenceofthebenefitsthatvolunteeringcanbringolderpeoplecontinuestorollin."Volunteershaveimprovedphysicalands
AccordingtoDavid,whatdoesasaferandmorecontrolledworldleadto?
最新回复
(
0
)