首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(94年)设4元齐次线性方程组(I)为又已知某齐次线性方程组(Ⅱ)的通解为k1(0,1,1,0)+k2(一1,2,2,1). (1)求线性方程组(I)的基础解系; (2)问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说
(94年)设4元齐次线性方程组(I)为又已知某齐次线性方程组(Ⅱ)的通解为k1(0,1,1,0)+k2(一1,2,2,1). (1)求线性方程组(I)的基础解系; (2)问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说
admin
2017-04-20
75
问题
(94年)设4元齐次线性方程组(I)为
又已知某齐次线性方程组(Ⅱ)的通解为k
1
(0,1,1,0)+k
2
(一1,2,2,1).
(1)求线性方程组(I)的基础解系;
(2)问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
选项
答案
(1)由已知,(I)的系数矩阵为 [*] 故(I)的基础解系可取为:(0,0,1,0),(一1,1,0,1). (2)有非零公共解. 将(Ⅱ)的通解代入方程组(I),则有 [*] 解得k
1
=一k
2
,当k
1
=一k
2
≠0时,则向量 k
1
(0,1,1,0)+k
2
(一1,2,2,1)=k
2
[(0,一1,一1,0)+(一1,2,2,1)]=k
2
解析
转载请注明原文地址:https://kaotiyun.com/show/PMu4777K
0
考研数学一
相关试题推荐
求幂级数x2n的收敛域及函数.
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:若α,β线性相关,则秩r(A)
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.求AB-1.
曲面x2+2y2+3z2=21在点(1,-2,2)的法线方程为____________.
设函数z=z(x,y)由方程确定,其中F为可微甬数,且F2’≠0,则=_______.
设函数f(x)连续且恒大于零,其中Ω(t)={(x,y,z)丨x2+y2+z2≤t2},D(t)={(z,y)丨x2+y2≤t2}.证明当t>0时,F(t)>2/πG(t).
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.求AB-1.
设n元线性方程组Ax=b,其中(I)证明行刿式|A|=(n+1)an;(Ⅱ)a为何值时,方程组有唯一解?求x1;(Ⅲ)a为何值时,方程组有无穷多解?求通解.
若二阶常系数线性齐次微分方程y"+ay’+by=0的通解为y=(C1+C2x)ex,则非齐次方程y"+ay’+by=x满足条件y(0)=2,y’(0)=0的解为y=___________.
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
随机试题
当你正利用WAVE几何链接器时,你的工作部件应是含有将被链接几何体的部件。
有意义学习的概念的提出者是()
下列关于FIDIC施工合同条件中合同担保的说法,正确的是()
炼铁生产过程中,高炉停炉操作时,要利用打水将炉顶温度控制在()℃之间。
下列关于采用预制安装法施工桥梁承载结构,叙述正确的是()。[2009年真题]
地下车站基坑开挖时,应进行中间验收的项目有()。
在教育目的价值取向中,属于文化本位论的代表人物是()。
2008年世界稻谷总产量68501.3万吨,比2000年增长14.3%;小麦总产量68994.6万吨,比2000年增长17.8%;玉米总产量82271.0万吨,比2000年增长39.1%;大豆总产量23095.3万吨,比2000年增长43.2%。将每
(2014上集管)项目收尾过程是结束项目某一阶段中的所有活动,正式收尾该项目阶段的过程。______不属于管理收尾。
MelbourneNamedWorld’sMostLiveableCityforFourthStraightYearMelbourneoutperformed139citiestotoptheEconomistIn
最新回复
(
0
)