首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知f(x)=在(-∞,+∞)存在原函数,求常数A以及f(x)的原函数.
已知f(x)=在(-∞,+∞)存在原函数,求常数A以及f(x)的原函数.
admin
2016-10-20
98
问题
已知f(x)=
在(-∞,+∞)存在原函数,求常数A以及f(x)的原函数.
选项
答案
易求得 [*] 仅当A=0时f(x)在x=0连续.于是f(x)在(-∞,+∞)连续,从而存在原函数.当A≠0时,x=0是f(x)的第一类问断点,从而f(x)在(-∞,+∞)不存在原函数.因此求得A=0.下求f(x)的原函数. 方法1° 被积函数是分段定义的连续函数,它存在原函数,也是分段定义的.由于原函数必是连续的,我们先分段求出原函数,然后把它们连续地粘合在一起,就构成一个整体的原函数. 当x<0时, [*] 取C
1
=0,随之取C
2
=1,于是当x→0
-
时与x→0
+
时∫f(x)dx的极限同为1,这样就得到f(x)的一个原函数 [*] 因此 ∫f(x)dx=F(x)+C,其中C为任意常数. 方法2° 由f(x)是连续函数知f(x)一定存在原函数,并且对任意常数口变上限定积分[*]均为f(x)的一个原函数.由于x=0是分段函数f(x)的分界点,因此可取a=0.下面求[*] 当x<0时, [*] 于是求得f(x)的一个原函数 [*] 因此 ∫f(x)dx=F(x)+C,其中C为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/PZT4777K
0
考研数学三
相关试题推荐
考虑一家商场某日5位顾客购买洗衣机的类型(直筒或滚筒).设P(5位顾客全部购买滚筒洗衣机)=0.0768,P(5位顾客全部购买直筒洗衣机)=0.0102,那么两类洗衣机都至少卖出一台的概率是多大?
设矩阵Am×n的秩为r(A)=m<n,Em为m阶单位矩阵,下列结论中正确的是().
α1,α2是向量组(Ⅱ)的一个极大无关组,(Ⅱ)的秩为2,故(Ⅰ)的秩为2.由于(Ⅰ)线性相关,从而行列式|β1,β2,β3|=0,由此解得a=3b;又β3可由向量组(Ⅱ)线性表示,从而β3可由α1,α2线性表示,所以向量组α1,α2,β3线性相关,于是行
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是().
将函数f(x)=e2x,x∈[0,π]展开成余弦级数.
试求y〞=x的经过点(0,1)且在此点与直线y=x/2+1相切的积分曲线.
证明:在自变量的同一变化过程中,(1)若f(x)是无穷大,则1/f(x)是无穷小;(2)若f(x)是无穷小且f(x)≠0,则1/f(x)是无穷大。
设函数D={(x.y)丨x2+y2≤4,x≥0,y≥0},f(x)为D上的正值连续函数,a,b为常数,求
设四元线性齐次方程组(1)为x1+x2=0x2-x4=0又已知某线性齐次方程组(Ⅱ)的通解为:k1(0,1,1,0)+k2(-1,2,2,1).求线性方程组(I)的基础解系.
随机试题
治疗阴水应以何为主:
肺炎球菌的主要致病物质是
体温调节中枢位于
实体公正包括哪些内容?()
某机电工程,合同中约定:建筑材料由建设单位提供;由于非施工单位原因造成的停工,机械补偿费为200元/台班,人工补偿费为50元/工日;总工期为120d;竣工时间提前奖励为3000元/d,误期损失赔偿费为5000元/d。经项目监理机构批准的施工进度计划如下图所
下列各项中,编制会计分录时必须考虑的因素有()。
在行业的市场结构特征分析中,相对少量的生产者在某种产品的生产中占据很大市场份额的情形是指()。
如果某个项目的投资收益率与该方案的资本成本率之差为负数时,则表明该筹集方案在经济上有利。()
差分方程△2yx一yx=5的解为________.
Allthemembersaredisappointed,for______(在此问题上仍未达成一致).
最新回复
(
0
)