首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若函数f(x,y)对任意正实数t,满足 f(tx,ty)=tnf(x,y), (*) 称f(x,y)为n次齐次函数.设f(x,y)是可微函数,证明:f(x,y)为n次齐次函数 =nf(x,y). (**)
若函数f(x,y)对任意正实数t,满足 f(tx,ty)=tnf(x,y), (*) 称f(x,y)为n次齐次函数.设f(x,y)是可微函数,证明:f(x,y)为n次齐次函数 =nf(x,y). (**)
admin
2019-05-14
22
问题
若函数f(x,y)对任意正实数t,满足
f(tx,ty)=t
n
f(x,y), (*)
称f(x,y)为n次齐次函数.设f(x,y)是可微函数,证明:f(x,y)为n次齐次函数
=nf(x,y). (**)
选项
答案
设f(x,y)是n次齐次函数,按定义,得 f(tx,ty)=t
n
f(x,y)([*]t>0)为恒等式.将该式两端对t求导,得 xf’
1
(tx,ty)+yf’
2
(tx,ty)=nt
n-1
f(x,y)([*]t>0), 令t=1,则xf’
x
(x,y)+yf’
y
(x,y)=nf(x,y). 现设上式成立.考察φ(t)=f(tx,ty)/t
n
([*]t>0),由复合函数求导法则可得 φ’(t)=1/t
n
[xf’
1
(tx,ty)+yf’
2
(tx,ty)]-[*]f(tx,ty) =1/t
n+1
[txf’
1
(tx,ty)+tyf’
2
(tx,ty)-nf(tx,ty)]=0, 即φ(t)为常数,φ(t)=φ(1)=f(x,y),即f(tx,ty)=t
n
f(x,y).
解析
转载请注明原文地址:https://kaotiyun.com/show/Pd04777K
0
考研数学一
相关试题推荐
设u=u(x,y),v=v(x,y)有连续的一阶偏导数且满足条件:F(u,v)=0,其中F有连续的偏导数且
求下列微分方程的通解或特解:+2y=e-xcosx.
设有平面光滑曲线l:x=x(t),y=y(t),z=0,t∈[α,β],以及空间光滑曲线L:x=x(t),y=y(t),z=f(x(t),y(t)),t∈[α,β],t=α,t=β分别是起点与终点的参数.试说明l,L及曲面S:z=f(x,y)的关系;
设C,C1,C2,C3是任意常数,则以下函数可以看作某个二阶微分方程的通解的是
(2017年)设函数f(x)在区间[0,1]上具有2阶导数,且f(1)>0,证明:方程f(x)f"(x)+(f’(x))2=0在区间(0,1)内至少存在两个不同实根.
(1998年)求直线L:在平面π:x—y+2z一1=0上的投影直线l0的方程,并求l0绕y轴旋转一周所成曲面的方程.
设A,B均是n(n>0)阶方阵,方程Ax=0和Bx=0有相同的基础解系ξ1,ξ2,ξ3,则下列方程组中也以ξ1,ξ2,ξ3为基础解系的是
设n阶行列式D中有一行元素及其余子式均为a(a≠0),k是自然数,则
设某次考试的考生成绩服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分.问在显著性水平0.05下,是否可以认为这次考试全体考生的平均成绩为70分?并给出检验过程.[附表]:t分布表.P{t(n)≤tp(n)}=
设4元齐次线性方程组(Ⅰ)为,又已知某齐次线性方程组(Ⅱ)的通解为k1(0,1,1,0)+k2(一1,2,2,1).问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
随机试题
采集粪便标本做隐血试验时应禁食
设曲线y=ln(1+x2),M是曲线上的点,若曲线在M点的切线平行于已知直线y-x+1=0,则点M的坐标是( )。
根据《标准施工招标文件》,关于资格审查委员会和评标委员会的说法,正确的有()。
关于国外建筑安装工程费用构成的说法中,正确的有()。
下列进出口商品,检验检疫机构不予受理免验申请的有( )
“经营单位”栏:()。“装货港”栏:()。
下列属于企业的经营风险的有()。
会场的主席台和场内座次一般根据()安排。
为下列词语中的加线字注音。骸骨静谧暗哑憔悴
一维数组与线性表的区别是(43)。
最新回复
(
0
)