首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,f’+(a)f’-(b)>0,且g(x)≠0(x∈[a,b),g’’(x)≠0(a<x<b),证明:存在ξ∈(a,b),使得
设f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,f’+(a)f’-(b)>0,且g(x)≠0(x∈[a,b),g’’(x)≠0(a<x<b),证明:存在ξ∈(a,b),使得
admin
2016-09-12
76
问题
设f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,f’
+
(a)f’
-
(b)>0,且g(x)≠0(x∈[a,b),g’’(x)≠0(a<x<b),证明:存在ξ∈(a,b),使得
选项
答案
设f’
+
(a)>0,f’
-
(b)>0, 由f’
+
(a)>0,存在x
1
∈(a,b),使得f(x
1
)>f(a)=0; 由f’
-
(b)>0,存在x
2
∈(a,b),使得f(x
2
)<f(b)=0, 因为f(x
1
)f(x
2
)<0,所以由零点定理,存在c∈(a,b),使得f(c)=0. 令h(x)=[*],显然h(x)在[a,b]上连续,由h(a)=h(c)=f(b)=0, 存在ξ
1
∈(a,c),ξ
2
∈(c,b),使得h’(ξ
1
)=h’(ξ
2
)=0, 而h’(x)=[*] 令φ(x)=f’(x)g(x)-f(x)g’(x),φ(ξ
1
)=φ(ξ
2
)=0, 由罗尔定理,存在ξ∈(ξ
1
,ξ
2
)[*](a,b),使得φ’(ξ)=0, 而φ’(x)=f’’(x)g(x)-f(x)g’’(x),所以[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Pht4777K
0
考研数学二
相关试题推荐
求下列函数的极限.
[*]
设f(x)在[a,b]上连续,(a,b)内可导,0<a<b,试证:存在∈(a,b),使
某立体上、下底面平行,且与x轴垂直,若平行于底面的截面面积A(x)是x的不高于二次的多项式,试证该立体体积为V=(B1+4M+B2)其中h为立体的高,B1,B2分别是底面面积,M为中截面面积。
设f(x)连续,且关于x=T对称,α<T<b,证明:∫αbf(x)dx=2∫Tbf(x)dx+∫α2T-bf(x)dx
设f(x)连续,证明∫abf(x)dx=(b-a)∫01f[a+(b-a)x]dx。
设f(x)在[a,b]上连续,在(a,b)内可导,证明:在(a,b)内存在点ξ,使得bea-aeb=(b-a)ea+b
下列广义积分发散的是________。
设有一正椭圆柱体,其底面长、短轴分别为2a、2b,用过此柱体底面的短轴且与底面成α角(0<a<)的平面截此柱体,得一楔形体,求此楔形体的体积V。
设(X,Y)为连续型随机向量,已知X的密度函数fX(x)及对一切x,在X=x的条件下Y的条件密度fY|X(y|x).求:(1)密度函数f(x,y);(2)Y的密度函数fY(y);(3)条件密度函数fX|Y(x|y).
随机试题
以下两个主体之间属于平权型民事法律关系的是
关于病毒与肿瘤发生的关系,哪项组合是错误的
《土地管理法》规定,单位和个人依法使用的国有土地,由()登记造册,核发证书,确认使用权。
《建设项目环境影响评价资质管理办法》规定:环境影响报告书业务范围有()个小类,环境影响报告表分()环境影响报告表。
公路工程重大、较大设计变更实行( )。
适用于两个变量均为二分称名变量的相关计算的是()。
InvasiveweedsareaseriousprobleminAustraliaWeeds【C1】______thebiodiversityofAustralia’suniquewaterways,NationalPark
网桥是一种常用的网络互联设备,它工作在OSI的(27),在LAN中用桥接少量以太网网段时,常用的网桥是(28)。从网桥的基本原理可知网桥(29),因此使用网桥有两个显著优点,其一是(30),其二是利用公共通信链路实现两个远程LAN的互联。
下面是求最大公约数的函数的首部Functiongcd(ByValxAsInteger,ByValyAsInteger)AsInteger若要输出8、12、16这3个数的最大公约数,下面正确的语句是
It’swhenyouareoutofcellphonerangeandfarthestfromhelpwhenyou’regoingtoneedurgentassistance.Thinkofbeingaboa
最新回复
(
0
)