首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,向量β2不能由α1,α2,α3线性表示,则必有( )
设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,向量β2不能由α1,α2,α3线性表示,则必有( )
admin
2019-02-18
87
问题
设向量组α
1
,α
2
,α
3
线性无关,向量β
1
可由α
1
,α
2
,α
3
线性表示,向量β
2
不能由α
1
,α
2
,α
3
线性表示,则必有( )
选项
A、α
1
,α
2
,β
1
线性无关。
B、α
1
,α
2
,β
2
线性无关。
C、α
2
,α
3
,β
1
,β
2
线性相关。
D、α
1
,α
2
,α
3
,β
1
+β
2
线性相关。
答案
B
解析
由α
1
,α
2
,α
3
线性无关,且β
2
不能由α
1
,α
2
,α
3
线性表示知,α
1
,α
2
,α
3
,β
2
线性无关,从而部分组α
1
,α
2
,β
2
线性无关,故B为正确答案。下面证明其他选项的不正确性。
取α
1
=(1,0,0,0)
T
,α
2
=(0,1,0,0)
T
,α
3
=(0,0,1,0)
T
,β
2
=(0,0,0,1)
T
,β
1
=α
1
,可知A项与C项错误。
对于选项D,由于α
1
,α
2
,α
3
线性无关,若α
1
,α
2
,α
3
,β
1
+β
2
线性相关,则β
1
+β
2
可由α
1
,α
2
,α
3
线性表示,而β
1
可由α
1
,α
2
,α
3
线性表示,从而β
2
可由α
1
,α
2
,α
3
线性表示,与假设矛盾,从而D项错误。故选B。
转载请注明原文地址:https://kaotiyun.com/show/PiM4777K
0
考研数学一
相关试题推荐
设直线y=kx与曲线y=所围平面图形为D1,它们与直线x=1围成平面图形为D2。求k,使得D1与D2分别绕x轴旋转一周成旋转体体积V1与V2之和最小,并求最小值;
设A为n阶非零矩阵,且存在自然数k,使得Ak=O,证明:A不可以对角化.
设随机变量X1,X2,…,Xm+n(m<n)独立同分布,其方差为σ2,令Y=Xi,Z=Xm+k.求:D(Y),D(Z);
设A为实对称矩阵,且A的特征值都大于零.证明:A为正定矩阵.
设α1,α2,…,αn为n个n维向量,证明:α1,α2,…,αn线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αn线性表示.
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
设f(x)在x=0的邻域内有定义,且f(0)=0,则f(x)在x=0处可导的充分必要条件是().
设f(x)在x=a的邻域内二阶可导且f’(a)≠0.则=_______.
设当x→x0时,f(x)的极限存在,而g(x)的极限不存在,则下列命题正确的是()
当x→0时,无穷小的阶数最高的是().
随机试题
转录是以RNA为模板合成RNA的过程。()
经行吐衄的发病机理主要是
燥邪致病多从
下列说法不正确的是()。
当年龄误告造成多付或少付保险费时,处理的方法为( )。
下列关于个人可循环授信额度表述中,正确的有()。
从经济学理论上说,生产的外部不经济会造成()。
甲公司发生下列有关交易性金融资产的业务:(1)2013年1月8日,甲公司购入丙公司发行的公司债券,该笔债券于2012年7月1日发行,面值为2500万元,票面利率为4%,债券利息按年支付。甲公司将其划分为交易性金融资产,支付价款为2600万元(
调式中I、Ⅲ、V级三和弦被称为正三和弦。()
A、Weshouldbehardworking.B、Weareincontrolofourlife.C、Wehavegreatpotentialforeverything.D、Wecanaccomplishther
最新回复
(
0
)