首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α=(α1,α2,…,αn)T是Rn中的非零向量,方阵A=ααT. (1)证明:对正整数m,存在常数t,使Am=tm一1A,并求出t; (2)求一个可逆矩阵P,使P一1AP=Λ为对角矩阵.
设α=(α1,α2,…,αn)T是Rn中的非零向量,方阵A=ααT. (1)证明:对正整数m,存在常数t,使Am=tm一1A,并求出t; (2)求一个可逆矩阵P,使P一1AP=Λ为对角矩阵.
admin
2017-04-23
71
问题
设α=(α
1
,α
2
,…,α
n
)T是R
n
中的非零向量,方阵A=αα
T
.
(1)证明:对正整数m,存在常数t,使A
m
=t
m一1
A,并求出t;
(2)求一个可逆矩阵P,使P
一1
AP=Λ为对角矩阵.
选项
答案
(1)A
m
=(αα
T
)(αα
T
)…(αα
T
)=α(α
T
α)
m一1
一α
T
=一(α
T
α)
m一1
(αα
T
)=[*]=t
m一1
A,其中t=[*] 秩(A)=1,因实对称矩阵A的非零特征值的个数等于它的秩,故A只有一个非零特征值,而有n一1重特征值λ
1
=λ
2
=…=λ
n一1
=0.设α
1
≠0,由0E [*] 得属于特征值0的特征值可取为:ξ
1
=[*] 由特征值之和等于A的主对角线元素之和,即0+0+…+0+λ
n
=[*] =α
T
α,由Aα=(αα
T
)α=α(α
T
α)=αλ
n
=λ
n
α及α≠0,得与λ
n
对应特征向量为α,令P=[ξ
1
ξ
2
… ξ
n一1
α],则有P
一1
AP=diag(0,0,…,0,[*]a
i
2
)为对角阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/Pkt4777K
0
考研数学二
相关试题推荐
函数f(x,y)在点(x0,y0)处偏导数存在,是f(x,y)在该点处________。
极限是否存在?
设f(x)在[0,1]上二阶可导,且f(0)=f(1)=0.证明:存在ξ∈(0,1),使得f"(ξ)=2f’(ξ)/(1-ξ).
设f(x)=3x2+Ax-3(x>0),A为正常数,问A至少为多少时,f(x)≥20?
设平面图形D由x2+y2≤2x与y≥x围成,求图形D绕直线x=2旋转一周所成的旋转体的体积.
在一条公路的一侧有某单位的A、B两个加工点,A到公路的距离.AC为1km,B到公路的距离BD为1.5km,CD长为3km(如图4—2).该单位欲在公路旁边修建一个堆货场M,并从A、B两个大队各修一条直线道路通往堆货场M,欲使A和B到M的道路总长最短,堆货场
设曲线y=ax2(a>0,x≥0)与y=1-x2交于点A,过坐标原点O和点A的直线与曲线y=ax2围成一平面图形.问a为何值时,该图形绕x轴旋转一周所得的旋转体体积最大?最大体积是多少?
设n阶矩阵A非奇异(n≥2),A*是A的伴随矩阵,则
设矩阵,已知线性方程组Ax=β有解但不唯一.试求:(1)a的值;(2)正交矩阵Q,使QTAQ为对角矩阵.
随机试题
久病畏寒,多见于哪种证候
关于初乳与成熟乳比较,正确的是( )
国际工程中经常遇到的外汇问题有哪些?
背景资料:某施工单位承接了一条二级公路施工任务,其中有一座跨越河流的大型桥梁。由于项目工期紧,临时便桥的修建不能短期完成,且河水很深,河床泥土松软,桩基承载力不够且施工困难。施工现场紧邻居民区,对因生产工艺要求,确需在夜间进行超过噪声标
甲、乙、丙、丁和戊采用募集方式设立A股份有限公司,5位发起人认购了部分股份,其余部分向社会公开募集。随后,公司召开创立大会,审议发起人关于公司筹办情况的报告,并决定成立公司。公司董事会决定由丙担任公司总经理。在公司成立后第8个月,丁因故急需用钱,遂决定将其
甲公司是一家制造业企业,只生产和销售一种新型保温容器。产品直接消耗的材料分为主要材料和辅助材料。各月在产品结存数量较多,波动较大,公司在分配当月完工产品与月末在产品的成本时,对辅助材料采用约当产量法,对直接人工和制造费用采用定额比例法。2016年6月有关
《公司法》原则上规定了股份有限公司不得收购本公司股份,下列属例外情形的有()。
设随机变量X与Y相互独立,其分布函数分别为FX(x)与FY(y),则z=max{X,Y}的分布函数FZ(z)是
设f(t)连续并满足f(t)=cos2t+∫01(s)sinsds,求f(t).
通常软件测试实施的步骤是
最新回复
(
0
)