首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α=(α1,α2,…,αn)T是Rn中的非零向量,方阵A=ααT. (1)证明:对正整数m,存在常数t,使Am=tm一1A,并求出t; (2)求一个可逆矩阵P,使P一1AP=Λ为对角矩阵.
设α=(α1,α2,…,αn)T是Rn中的非零向量,方阵A=ααT. (1)证明:对正整数m,存在常数t,使Am=tm一1A,并求出t; (2)求一个可逆矩阵P,使P一1AP=Λ为对角矩阵.
admin
2017-04-23
51
问题
设α=(α
1
,α
2
,…,α
n
)T是R
n
中的非零向量,方阵A=αα
T
.
(1)证明:对正整数m,存在常数t,使A
m
=t
m一1
A,并求出t;
(2)求一个可逆矩阵P,使P
一1
AP=Λ为对角矩阵.
选项
答案
(1)A
m
=(αα
T
)(αα
T
)…(αα
T
)=α(α
T
α)
m一1
一α
T
=一(α
T
α)
m一1
(αα
T
)=[*]=t
m一1
A,其中t=[*] 秩(A)=1,因实对称矩阵A的非零特征值的个数等于它的秩,故A只有一个非零特征值,而有n一1重特征值λ
1
=λ
2
=…=λ
n一1
=0.设α
1
≠0,由0E [*] 得属于特征值0的特征值可取为:ξ
1
=[*] 由特征值之和等于A的主对角线元素之和,即0+0+…+0+λ
n
=[*] =α
T
α,由Aα=(αα
T
)α=α(α
T
α)=αλ
n
=λ
n
α及α≠0,得与λ
n
对应特征向量为α,令P=[ξ
1
ξ
2
… ξ
n一1
α],则有P
一1
AP=diag(0,0,…,0,[*]a
i
2
)为对角阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/Pkt4777K
0
考研数学二
相关试题推荐
设u=arcsin,则du=________。
设函数f(x)在区间[0,1]上连续,并设∫01f(x)dx=A,求∫01dx∫x1f(x)f(y)dy。
计算极限.
设函数z=z(x,y)由方程z=e2x-3z+2y确定,则=________。
设f(x)在x0的邻域内四阶可导,且|f(4)(x)|≤M(M>0).证明:对此邻域内任一异于x0的点x,有|f"(x0)-[f(x)+f’(x)-2f(x0)]/(x-x0)2|≤M/12(x-x0)2,其中x’为z关于x0的对称点.
设两曲线y=x2+ax+b与-2y=-1+xy3在点(-1,1)处相切,则a=________,b=________.
设y=y(x)由方程ey+6xy+x2-1=0确定,求y"(0).
设A,B为同阶可逆矩阵,则().
试确定常数A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+o(x3),其中o(x3)是当x→0时比x3高阶的无穷小.
设A为3阶实对称矩阵,且满足条件A2+2A=0,已知A的秩r(A)=2.当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
随机试题
简述企业财务管理的方法。
设有抛物线y=4x-x2,抛物线上哪一点处的切线平行于x轴?写出该切线方程.
具有主司眼睑开合功能的是
表证和里证的主要鉴别要点是
我国《中华人民共和国审计法》正式施行的时间是()。
根据《合同法》的规定,在受赠人()的情况下,赠与人可以撤销赠与。
Recently,asurveywasdoneamong288,000students,whichshowsthattoday’straditional-agecollegefreshmenare"morematerial
设P(B)=0.5,P(A—B)=0.3,则P(A+B)=_________.
一般,硬盘的容量大概是内存容量的()。
•Youwillhearanotherfiverecordings.•Foreachrecording,decidewhoisspeaking.•Writeoneletter(A--H)nexttothenumber
最新回复
(
0
)