首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α=(α1,α2,…,αn)T是Rn中的非零向量,方阵A=ααT. (1)证明:对正整数m,存在常数t,使Am=tm一1A,并求出t; (2)求一个可逆矩阵P,使P一1AP=Λ为对角矩阵.
设α=(α1,α2,…,αn)T是Rn中的非零向量,方阵A=ααT. (1)证明:对正整数m,存在常数t,使Am=tm一1A,并求出t; (2)求一个可逆矩阵P,使P一1AP=Λ为对角矩阵.
admin
2017-04-23
81
问题
设α=(α
1
,α
2
,…,α
n
)T是R
n
中的非零向量,方阵A=αα
T
.
(1)证明:对正整数m,存在常数t,使A
m
=t
m一1
A,并求出t;
(2)求一个可逆矩阵P,使P
一1
AP=Λ为对角矩阵.
选项
答案
(1)A
m
=(αα
T
)(αα
T
)…(αα
T
)=α(α
T
α)
m一1
一α
T
=一(α
T
α)
m一1
(αα
T
)=[*]=t
m一1
A,其中t=[*] 秩(A)=1,因实对称矩阵A的非零特征值的个数等于它的秩,故A只有一个非零特征值,而有n一1重特征值λ
1
=λ
2
=…=λ
n一1
=0.设α
1
≠0,由0E [*] 得属于特征值0的特征值可取为:ξ
1
=[*] 由特征值之和等于A的主对角线元素之和,即0+0+…+0+λ
n
=[*] =α
T
α,由Aα=(αα
T
)α=α(α
T
α)=αλ
n
=λ
n
α及α≠0,得与λ
n
对应特征向量为α,令P=[ξ
1
ξ
2
… ξ
n一1
α],则有P
一1
AP=diag(0,0,…,0,[*]a
i
2
)为对角阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/Pkt4777K
0
考研数学二
相关试题推荐
设函数f(x)在区间[0,1]上连续,并设∫01f(x)dx=A,求∫01dx∫x1f(x)f(y)dy。
设函数u=f(x,y,z)有连续偏导数,且z=z(x,y)由方程xex-yey=zex所确定,求du。
计算极限.
差分方程yt+1+2yt=0的通解为________.
设线性无关函数y1(x),y2(x),y3(x)都是二阶非齐次线性方程y"+P(x)y’+Q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是________。
设函数f(x)在[1,+∞)上连续,若由曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成的平面图形绕x轴旋转一周所成的旋转体体积为V(t)=[t2f(t)-f(1)]试求y=f(x)所满足的微分方程,并求该微分方程满足条件y|x=2=的解。
设f(x),g(x)在区间[a,b]上连续,且g(x)<f(x)<m,则由曲线y=g(x),y=f(x)及直线x=a,x=b所围成的平面区域绕直线y=m旋转一周所得旋转体体积为().
求二元函数z=f(x,y)=x2y(4-x-y)在由x轴、y轴及x+y=6所围成的闭区域D上的最小值和最大值.
设f(x)=3x2+Ax-3,问正数A至少为何值时,可使对任意的x∈(0,+∞),都有f(x)≥20.
设sOy,平面上有正方形D={(x,y)|0≤x≤1,0≤y≤1}及直线l:x+y=t(t≥0).若S(t)表示正方形D位于直线l左下方部分的面积,试求
随机试题
针对青少年家庭以及有相同需要或背景的青少年群体而开展的社会工作服务,属于哪类青少年社会工作?()
在Word的哪种视图方式下可以显示分页效果()。
鞭虫寄生于宿主的
图5—73所示细长杆AB的A端自由,B端固定在简支梁上,该压杆的长度细数μ是()。
帷幕灌浆施工工艺主要包括()等。
下列关于股票价值与价格的叙述,不正确的是()。
下列股东大会的事项中,适用于累积投票制的是()。
《计量法实施细则》第五十一条规定的行政处罚,可以由()决定。
SQL语言的查询语句是()。
TheArtofFriendshipA)OneeveningafewyearsagoIfoundmyselfinananxiety.Nothingwasreallywrong—myfamilyandIw
最新回复
(
0
)