首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[0,1]上连续,且f(χ)<1,证明:2χ-∫0χf(t)dt=1在(0,1)有且仅有一个根.
设f(χ)在[0,1]上连续,且f(χ)<1,证明:2χ-∫0χf(t)dt=1在(0,1)有且仅有一个根.
admin
2017-09-15
28
问题
设f(χ)在[0,1]上连续,且f(χ)<1,证明:2χ-∫
0
χ
f(t)dt=1在(0,1)有且仅有一个根.
选项
答案
令φ(χ)=2χ-∫
0
χ
f(t)dt-1,φ(0)=-1,φ(1)=1-∫
0
1
f(t)dt, 因为f(χ)<1,所以∫
0
1
(t)dt<1,从而φ(0)φ(1)<0, 由零点定理,存在c∈(0,1),使得φ(c)=0. 因为φ′(χ)=2-f(χ)>0,所以φ(χ)在[0,1]上单调增加,故方程2χ-∫
0
χ
f(t)dt=1有且仅有一个根.
解析
转载请注明原文地址:https://kaotiyun.com/show/jsk4777K
0
考研数学二
相关试题推荐
A、 B、 C、 D、 D
A、 B、 C、 D、 C
设F(x,y)是一个二维随机向量(X,Y)的分布函数,x1
设区域D是由直线y=x-1,y=x+1,x=2及坐标轴围成的区域(图3-8).(X,Y)服从区域D上的均匀分布.求条件密度函数fY|X(y|x)和fX|Y(x|y).
设a。,a1,…an为满足的实数,证明方程a。+a1x+a2x2+…+anxn=0在(0,1)内至少有一个实根.
设有函数试分析在点x=0处,k为何值时,f(x)有极限;k为何值时,f(x)连续;k为何值时,f(x)可导.
某闸门的形状与大小如图所示,其中直线2为对称轴,闸门的上部为矩形ABCD,下部由二次抛物线与线段AB所围成.当水面与闸门的上端相平时,欲使闸门矩形部分承受的水压力与闸门下部承受的水压力之比为5:4,闸门矩形部分的高h应为多少m(米)?
求微分方程ydx+(x-3y2)dx=0满足条件y|x=1=1的解y。
设函数z=f(u),方程u=ψ(u)+∫yx(f)df确定“是x,y的函数,其中f(u),ψ(u)可微;p(t),ψ’(u)连续,且ψ’(u)≠1.求.
随机试题
患者,男,35岁。间断喘息发作5年,无明显季节性,发作以夜间为著。发作时口服β受体激动剂症状可明显缓解。近日喘息再次发作,行肺功能检查示,FEV占预计值的84%,FEV1/FVC82%。为明确诊断,应首先进行的检查是
在Word中,按______键可实现“插入”方式与“改写”方式的相互转换。
简述新时代党的建设的方针。
机体各种功能活动所消耗的能量中,最终不能转化为体热的是
关于酒剂与酊剂的叙述,正确的是()。
私人储蓄的两个来源是()。
也许监管部门已经习惯了让媒体跑在前面,自己在后__________,在舆论压力下被动执法,这样的监管从根本上是对违法企业的__________,企业自然有恃无恐。填入划横线部分最恰当的一项是:
下列关于企业合并与分立的说法不正确的是()
下列算法中,不属于进程调度算法的是
Somedoctorsaretakinganunusualnewapproachtocommunicatebetterwithpatients—theyareletting【C1】______readthenotestha
最新回复
(
0
)