首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设F(x)=,求F’(x)(x>-1,x≠0)并讨论F’(x)在(-1,+∞)上的连续性。
设F(x)=,求F’(x)(x>-1,x≠0)并讨论F’(x)在(-1,+∞)上的连续性。
admin
2018-11-16
72
问题
设F(x)=
,求F
’
(x)(x>-1,x≠0)并讨论F
’
(x)在(-1,+∞)上的连续性。
选项
答案
先将F(x)转化为变限积分,令s=xt,则F(x)=[*]①→F
’
(x)[*]② 下面讨论F
’
(x)的连续性,因In(1+s),sIn(1+s)当s>-1时连续,于是由②式及变限积分的连续性与连续性运算法则知当x>-1且x≠0时F
’
(x)连续,余下只需再求F
’
(0)并考察F
’
(x)在点x=0处的连续性。 注意F(0)=0,且[*], 从而F(x)在点x=0处连续,又[*],于是F
’
(0)=[*],因此[*]F
’
(x)=F
’
(0),F
’
(x)在点x=0处连续,这就证明了F
’
(x)在(-1,+∞)上连续。
解析
转载请注明原文地址:https://kaotiyun.com/show/PyW4777K
0
考研数学三
相关试题推荐
设,则a=________.
设证明A可对角化;
设非零n维列向量α,β正交且A=αβT.证明:A不可以相似对角化.
随机变量(X,Y)的联合密度函数为f(x,y)=求(x,y)落在区域x2+y2≤内的概率.
一条曲线经过点(2,0),且在切点与y轴之间的切线长为2,求该曲线.
二次型f(x1,x2,x3)=x12+ax22+x32一4x1x2一8x1x3一4x2x3经过正交变换化为标准形5y12+by22一4y32,求:常数a,b;
设二元函数f(x,y)=|x一y|φ(x,y),其中φ(x,y)在点(0,0)处的某邻域内连续.证明:函数f(x,y)在点(0,0)处可微的充分必要条件是φ(0,0)=0.
设总体X~N(μ,σ2),其中μ已知,σ2>0为未知参数,X1,X2,…,Xn是来自总体X的样本,则σ2的置信度为1一a的置信区间为().
设幂级数anxn在(一∞,+∞)内收敛,其和函数y(x)满足y"—2xy’—4y=0,y(0)=0,y’(0)=1(Ⅰ)证明:an+2=an,n=1,2,…;(Ⅱ)求y(x)的表达式。
设幂级数在(一∞,+∞)内收敛,其和函数y(x)满足.y’’一2xy’一4y=0,且y(0)=0,y’(0)=1.求y(x)的表达式.
随机试题
该患儿可能合并了该患儿拟给予泼尼松长程疗法,正确的疗程是
Apeculiarlypointedchinishismostmemorablefacial______.
肛管术后护理不宜()。
【背景资料】A机电安装公司总承包了一化工车间的机电安装工程,包括本车间范围内的槽罐制作安装任务。由于工期要求非常紧张,他们把设备安装分包给了B专业承包公司,把管道工程(包括蒸汽管道)分包给了C专业承包公司,把电气仪表分包给了D专业承包公司,把槽罐
奥肯定律适用于所有国家。()
2015年年底,甲公司受到大规模P2P行业“非法集资案”的影响,经济也陷入危机。2016年1月10日,甲公司债权人乙公司依法向A区人民法院申请甲公司破产,A区人民法院依法受理了乙公司提出的破产申请,指定丙律师事务所为管理人,于3月20日通知了已知债权人并予
今后,技术的交叉与融合会越来越明显。新一轮科技和产业革命的方向不会仅仅依赖于一两类学科或某种单一技术,而是多学科、多技术领域的高度交叉和深度融合。技术融合趋势决定了战略性新兴产业不可能也不应该孤立地发展,而是既要有利于推动传统产业的创新,又要有利于未来新兴
已知x1,x2,x3的算术平均值为a,y1,y2,y3的算术平均值为b,则2x1+3y1,2x2+3y2,2x3+3y3是算术平均值为().
Thiswasthecapital’smostanxiousweeksinceSeptember11th.OnMondaythegovernmentissuedaredalertthatterroristattac
TheAlzheimer’sAssociationandtheNationalAllianceforCaregivingestimatethatmenmakeupnearly40percentoffamilycare
最新回复
(
0
)