首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设F(x)=,求F’(x)(x>-1,x≠0)并讨论F’(x)在(-1,+∞)上的连续性。
设F(x)=,求F’(x)(x>-1,x≠0)并讨论F’(x)在(-1,+∞)上的连续性。
admin
2018-11-16
81
问题
设F(x)=
,求F
’
(x)(x>-1,x≠0)并讨论F
’
(x)在(-1,+∞)上的连续性。
选项
答案
先将F(x)转化为变限积分,令s=xt,则F(x)=[*]①→F
’
(x)[*]② 下面讨论F
’
(x)的连续性,因In(1+s),sIn(1+s)当s>-1时连续,于是由②式及变限积分的连续性与连续性运算法则知当x>-1且x≠0时F
’
(x)连续,余下只需再求F
’
(0)并考察F
’
(x)在点x=0处的连续性。 注意F(0)=0,且[*], 从而F(x)在点x=0处连续,又[*],于是F
’
(0)=[*],因此[*]F
’
(x)=F
’
(0),F
’
(x)在点x=0处连续,这就证明了F
’
(x)在(-1,+∞)上连续。
解析
转载请注明原文地址:https://kaotiyun.com/show/PyW4777K
0
考研数学三
相关试题推荐
设A是三阶实对称矩阵,r(A)=1,A2一3A一0,设(1,1,一1)T为A的非零特征值对应的特征向量.求矩阵A.
设向量α=(a1,a2,…,an)T,其中a1≠0,A=ααT.求方程组AX=0的通解;
设(X,Y)的联合概率密度为.f(x,y)=求:(X,Y)的边缘密度函数;
设随机变量X的密度函数为f(x)=求常数A;
二次型f(x1,x2,x3)=x12+ax22+x32一4x1x2一8x1x3一4x2x3经过正交变换化为标准形5y12+by22一4y32,求:常数a,b;
设二元函数f(x,y)=|x一y|φ(x,y),其中φ(x,y)在点(0,0)处的某邻域内连续.证明:函数f(x,y)在点(0,0)处可微的充分必要条件是φ(0,0)=0.
设A为n阶非奇异矩阵,α是n维列向量,b为常数,计算PQ;
(15年)设函数f(χ)在定义域I上的导数大于零.若对任意的χ0∈I,曲线y=f(χ)在点(χ0,f(χ0))处的切线与直线χ=χ0及χ轴所围成区域的面积恒为4,且f(0)=2,求f(χ)的表达式.
设A为3阶实对称矩阵,若存在正交矩阵Q,使得又已知A的伴随矩阵A*有一个特征值为λ=1,相应的特征向量为α=(1,1,1)T.(I)求正交矩阵Q;(Ⅱ)求二次型xT(A*)-1x的表达式,并确定其正负惯性指数.
设f(x)=,讨论函数f(x)的连续性,若有间断点,指明其类型.
随机试题
下列关于《诗经》的说法正确的是()。
除规范特别规定外,公共建筑内的每个防火分区或一个防火分区的每个楼层,其安全出口数量应经计算确定,且不应少于()个,安全出口最近边缘之间的水平距离不应小于()m。
有效的管理控制不仅能够保证组织成员的行为在出现偏差时能够及时得以纠正,也能够修正、调整计划。()
临床诊断脊柱结核,下列哪项指标最有价值
林某,46岁。胃病26年,反复因饮食不慎,出现呕吐,时作时止,面色苍白,倦怠乏力,口干不欲饮,四肢不温,大便溏薄,舌质淡,脉濡弱。此时宜选用
某商业企业(增值税一般纳税人)9月向消费者个人销售金银首饰取得收入58950元,零售金银镶嵌首饰取得收入35780元,销售镀金首饰取得收入85000元,销售镀金镶嵌首饰取得收入12378元,取得金银首饰的修理、清洗收入780元。该企业上述业务应缴纳的消费税
劳动争议当事人申请仲裁的,应当从()其权利被侵害之日起1年内,以书面形式向劳动争议仲裁委员会申请仲裁。
李某是甲股份有限公司(简称甲公司)的实际控制人,因借款需要请求甲公司为其提供担保。甲公司遂召开股东大会对此事项进行表决。下列关于甲公司股东大会决议的表述中,正确的是()。
年轻的教帅初登讲台时往往十分紧张,担心自己是否能被学生和领导接受。此时期的教师处在()。
Ifyouarearesident,you’llfinditusefultoopena【T1】________.Allthelargebankshaveanetworkof【T2】________acrossthe
最新回复
(
0
)