首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(15年)设函数f(χ)在定义域I上的导数大于零.若对任意的χ0∈I,曲线y=f(χ)在点(χ0,f(χ0))处的切线与直线χ=χ0及χ轴所围成区域的面积恒为4,且f(0)=2,求f(χ)的表达式.
(15年)设函数f(χ)在定义域I上的导数大于零.若对任意的χ0∈I,曲线y=f(χ)在点(χ0,f(χ0))处的切线与直线χ=χ0及χ轴所围成区域的面积恒为4,且f(0)=2,求f(χ)的表达式.
admin
2017-05-26
120
问题
(15年)设函数f(χ)在定义域I上的导数大于零.若对任意的χ
0
∈I,曲线y=f(χ)在点(χ
0
,f(χ
0
))处的切线与直线χ=χ
0
及χ轴所围成区域的面积恒为4,且f(0)=2,求f(χ)的表达式.
选项
答案
曲线y=f(χ)在点(χ
0
,f(χ
0
))处的切线方程为 y-f(χ
0
)=f′(χ
0
)(χ-χ
0
) 令y=0得,χ=χ
0
-[*]. 切线y-f(χ
0
)=f′(χ
0
)(χ-χ
0
),直线χ=χ
0
及χ轴所围区域的面积 [*] 即[*]=4,记y=f(χ
0
),则 [*]y
2
=4y′ 解方程得-[*]=χ+C 由y(0)=2知,C=-4, 则所求曲线方程为y=[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/ZxH4777K
0
考研数学三
相关试题推荐
假设曲线l1:y=1-x2(0≤x≤1)与x轴,y轴所围成区域被曲线l2:y=ax2分为面积相等的两部分,其中a是大于零的常数,试确定口的值.
设z轴与重力的方向一致,求质量为m的质点从位置(x1,y1,z1)沿直线移到(x2,y2,z2)时重力所作的功.
设生产某种产品必须投入两种要素,x1和x2分别为两要素的投入量,Q为产出量;若生产函数为Q=2x1αx2β,其中αβ为正常数,且α+β=1.假设两种要素的价格分别为P1和p2,试问:当产出量为12时,两要素各投入多少可以使得投入总费用最小?
设f(x,y)为区域D内的函数,则下列各种说法中不正确的是().
设,其中f(x)为连续函数,则等于().
设X1,X2,…,Xn是来自正态总体X的简单随机样本,Y1=1/6(X1+…+X6),Y2=1/3(X7+X8+X9),S2=(X1-Y2)2,Z=,证明统计量Z服从自由度为2的t分布.
设向量a=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件aTβ=0,记n阶矩阵A=aβT,求:(Ⅰ)A2;(Ⅱ)矩阵A的特征值和特征向量.
设A,B为同阶方阵,(1)如果A,B相似,试证A,B的特征多项式相等.(2)举一个二阶方阵的例子说明(1)的逆命题不成立.(3)当A,曰均实对称矩阵时,试证(1)的逆命题成立.
已知f(x)是微分方程xf’(x)-f(x)=满足f(1)=0的特解,则∫01f(x)dx=_________.
求极限
随机试题
ABC会计事务所的A注册会计师首次接受委托,负责审计上市公司甲公司2014年度财务报表。相关资料如下:资料一:上期财务报表已经由XYZ会计师事务所审计,A注册会计师拟查阅前任注册会计师的工作底稿来获取有关期初余额的审计证据。资料二:A注册
蛋白质的生物合成即翻译是在细胞质中,以mRNA为模板,在tRNA、氨酰基-tRNA合成酶、核糖体以及许多蛋白质因子和能量物质的共同作用下,将储存在mRNA核苷酸序列中的遗传信息转变成由20种氨基酸组成的蛋白质过程。以下有关核糖体的论述不正确的是
在签订临时合同之后,即可要求求购委托方支付定金,如立约一方预先签订的合同不能在有效期内安排另一方签订,此定金是否退还,答案是()。
点x=0是y=arctan的:
下列对于商业汇票的提示付款期限表述正确的是()。
企业取得的各项免税收入所对应的各项成本费用,除另有规定者外,不得在计算企业应纳税所得额时扣除。()
某男,45岁,外企工作。因焦虑不安求助。求助者在外企某办事处为负责人,已十余年,薪水较高。妻子是中学教师,夫妻感情好,女儿读高中,学习优异。近一年来,生意难做,自己虽努力工作,美国老板似有不满之意,为此忧心忡忡。开始担心运货物的船只会不会沉没,有时
青少年思维发展的水平属于
鲍莫尔存货模型[中山大学2007研]
ItwasabeautifulsummerdayandIwastakingawalkinthedowntownareaofMadrid.WhenIturnedastreet【C1】______Iheardth
最新回复
(
0
)