首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(16)已知矩阵A= (Ⅰ)求A99; (Ⅱ)设3阶矩阵B=(a1,a2,a3)满足B2=BA,记B100=(β1,β2,β3),将β1,β2,β3分别表示为α1,α2,α3的线性组合.
(16)已知矩阵A= (Ⅰ)求A99; (Ⅱ)设3阶矩阵B=(a1,a2,a3)满足B2=BA,记B100=(β1,β2,β3),将β1,β2,β3分别表示为α1,α2,α3的线性组合.
admin
2018-08-01
67
问题
(16)已知矩阵A=
(Ⅰ)求A
99
;
(Ⅱ)设3阶矩阵B=(a
1
,a
2
,a
3
)满足B
2
=BA,记B
100
=(β
1
,β
2
,β
3
),将β
1
,β
2
,β
3
分别表示为α
1
,α
2
,α
3
的线性组合.
选项
答案
(Ⅰ)利用方阵A的相似对角化来求方阵A的幂,为此先来求A的特征值与特征向量,由 |λE-A|=[*]=λ(λ+1)(λ+2)=0, 得A的全部特征值为λ
1
=0,λ
2
=-1,λ
3
=-2, 对于特征值λ
1
=0,解方程组Ax=0,得对应的特征向量ξ
1
=(3,2,2)
T
, 对于特征值λ
2
=-1,解方程组(-E-A)x=0,得对应的特征向量ξ
2
=(1,1,0)
T
, 对于特征值λ
3
=-2,解方程组(-2E-A)x=0,得对应的特征向量ξ
3
=(1,2,0)
T
, 令矩阵P=(ξ
1
,ξ
2
,ξ
3
)=[*],则P
-1
AP=[*]=D. 于是得 A
99
=(PDP
-1
)
99
=PD
99
P
-1
[*] (Ⅱ)因为B
2
=BA,所以 B
100
=B
98
B
2
=B
99
A=B
97
B
2
A=B
98
A
2
=…=BA
99
, 即 (β
1
,β
2
,β
3
)=(α
1
,α
2
,α
3
)[*] 所以 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Q2j4777K
0
考研数学二
相关试题推荐
设x与y均大于0且x≠y,证明
设A为m×n矩阵,且r(A)=m<n,则下列结论正确的是().
设函数f(x)=(α>0,β>0).若(x)在x=0处连续,则
设f(x)连续,证明:∫0x[∫0tf(u)du]dt=∫0xf(t)(x-t)dt.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:存在η∈(a,b),使得ηf’(η)+f(η)=0.
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数.(1)将x=x(y)所满足的微分方程变换为y=y(x)所满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的解.
设f(x)是二阶常系数非齐次线性微分方程y"+py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,().
设向量组(Ⅰ):α1,α2,…,αs的秩为r1,向量组(Ⅱ):β1,β2,…,βs的秩为r2,且向量组(Ⅱ)可由向量组(Ⅰ)线性表示,则().
已知二次型f(x1,x2,x3)=4x22一3x32+4x1x2—4x1x3+8x2x3.(1)写出二次型f的矩阵表达式;(2)用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22.
随机试题
Hedemandedthatweexplainwhatwashappening,______?
根据《中华人民共和国招标投标法实施条例》,投标保证金的数额不得超过招标项目估算价的()。
下列资本公积项目中,可以直接用于转增股份有限公司股本的是()。
未经股东会、股东大会同意,国有资本控股公司的董事长不得兼任经理。()
老子说:“故善人者,不善人之师;不善人者,善人之资。不贵其师,不爱其资,虽智大迷。是谓要妙。”下列对老子这段话的理解,不正确的是()。
下列关于我国国土资源的叙述,正确的是()。
Ascollegeteachers,theyenjoytalkingabouttheirown______.
设正数列{an}满足a1=a2=1,an=an-1+a2,n=3,4,5,…,且已知某常数项级数的部分和为Sn=(1/2)+(1/22)+(2/23)+(3/24)+(5/25)+(8/26)+(13/27)+(an-1/2n-1)+(an/2n
A、 B、 C、 D、 A
下面关于B-ISDN的叙述中错误的是
最新回复
(
0
)