首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶实对称矩阵,且存在可逆矩阵 又A的伴随矩阵A*有特征值λ0 ,λ0所对应的特征向量为α=[2,5,一1]T. (1)求λ0的值; (2)计算(A*)一1; (3)计算行列式|A*+E|.
设A为三阶实对称矩阵,且存在可逆矩阵 又A的伴随矩阵A*有特征值λ0 ,λ0所对应的特征向量为α=[2,5,一1]T. (1)求λ0的值; (2)计算(A*)一1; (3)计算行列式|A*+E|.
admin
2016-12-16
101
问题
设A为三阶实对称矩阵,且存在可逆矩阵
又A的伴随矩阵A
*
有特征值λ
0
,λ
0
所对应的特征向量为α=[2,5,一1]
T
.
(1)求λ
0
的值;
(2)计算(A
*
)
一1
;
(3)计算行列式|A
*
+E|.
选项
答案
(1)由题设,有[*],令P=[α
1
,α
2
,α
3
],其中 [*] 则 Aα
1
=1.α
1
,Aα
2
=2.α
2
,Aα
3
一1.α
3
,即α
1
,α
2
,α
3
是属于3个不同特征值λ
1
=1,λ
2
=2,λ
3
=一1的特征向量.而A为三阶实对称矩阵,其不同特征值对应的特征向量必正交,则 [*] 解得 a=0,b=一2. 又A
*
α=λ
0
α,而a=一α
3
,于是有 A
*
(一α
3
)=λ
0
(一α
3
),即A
*
α
3
=λ
0
α
3
,从而AA
*
tα
3
=λ
0
Aα
3
,|A|α
3
=λ
0
Aα
3
,可见 [*] 又Aα
3
=(一1)α
3
,因此有[*]=λ
3
=一1,故λ
0
=2. (2)由Aα
1
=1.α
1
,Aα
2
=2.α
2
,Aα
3
=一1.α
3
及 [*] 有A[α
1
,α
2
,α
3
]=[α
1
,2α
2
,一α
3
].于是 A=[α
1
,α
2
,α
3
][α
1
,α
2
,α
3
]
一1
[*] (3)由Aα
i
=λ
i
fα
i
(1=1,2,3),有A
*
α
i
=[*] 进而有 (A
*
+E)α
i
=[*] 可见A
*
+E的特征值为 [*] 即 μ
1
=一1,μ
2
=0,μ
3
=3. 故 |A
*
+E|=μ
1
μ
2
μ
3
=0.
解析
利用实对称矩阵的特征向量正交性可求出a,b,再由A的特征值1,2,一1,可求得A
*
的特征值,从而求得A
*
+E的特征值,于是其行列式易求得.可用公式(A
*
)
一1
=A/|A|简化求得(A
*
)
一1
.
转载请注明原文地址:https://kaotiyun.com/show/Q6H4777K
0
考研数学三
相关试题推荐
求下列函数的所有二阶偏导数:
求下列微分方程的通解:(1)y〞-2yˊ=0;(2)y〞-3yˊ+2y=0;(3)y〞+4y=0;(4)y〞-4yˊ+5y=0;(5)y〞-6yˊ+9y=0;(6)y〞+2yˊ+ay=0;(7)y〞+6y〞+10yˊ=0;
设{an},{bn},{cn}均为非负数列,且则必有
设函数在(-∞,+∞)内连续,则c=_________.
设函数y=y(x)由方程ylny-x+y=0确定,试判断曲线y=y(x)在点(1,1)附近的凹凸性.
一男子到闹市区去,他遇到背后袭击并被抢劫,他断言凶手是个白人,然而当调查这一案件的法院在可比较的光照条件下多次重复展现现场情况时,受害者正确识别袭击者种族的次数约占80%,袭击者确实是白人的概率是0.8吗?试给出说明.
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:“20件产品全是合格品”与“20件产品中至多有一件是废品”.
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设n元线性方程组Ax=b,其中,x=(x1,…,xn)T,b=(1,0,…,0)T.(I)证明行列式|A|=(n+1)an;(Ⅱ)a为何值时,方程组有唯一解?求x1;(Ⅲ)a为何值时,方程组有无穷多解?求通解.
设四元线性齐次方程组(1)为x1+x2=0x2-x4=0又已知某线性齐次方程组(Ⅱ)的通解为:k1(0,1,1,0)+k2(-1,2,2,1).问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解,若没有,则说明理由.
随机试题
王某应所在单位授权购买一批原材料,正好自己妻弟的私营企业有这种原材料,王某便同妻弟订了合同,后来王某单位认为这批原材料虽然符合要求,但因是王某妻弟的私人企业提供,王某以权谋私,在民法上构成“自己代理”。你认为王某的自己代理()。A.构成B.基本
男性,62岁。有吸烟史36年。支气管镜活检可见鳞状上皮和支气管腺体。此种病理变化属于
口腔临床试验中设立对照组的种类不包括
裂化有时又称为裂解,是指有机化合物的分子在高温下发生分解的反应过程,其中,()在高温和催化剂的作用下进行,用于由重油生产轻油的工艺。
密闭式盾构姿态与位置控制内容有:盾构倾角、方向、旋转以及()。
在建设工程项目施工成本管理中,寻求最大程度的成本节约是基于()的情况。
甲公司(水泥生产企业)于2005年7月在上海证券交易所上市,因2016年、2017年经审计的净利润连续为负值,上海证券交易所对其股票实施了退市风险警示。乙国有独资公司(由北京市国资委履行出资人职责)为甲公司的控股股东,持有甲公司40%的股份。甲公司2017
目前普遍出现的一种现象是,男孩调皮捣蛋,胆小怕事,学习成绩不如女孩好。近些年,这种现象已经成为教育学家关注的一个重点问题。一位专家在对相关数据进行统计之后提出,男孩之所以从小学、中学到大学全面落后于同年龄段的女孩,是家庭和学校不适当的教育方法所导致的。以下
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,且f’+(a)>0.证明:存在ξ∈(a,b),使得f"(ξ)<0.
Thefirsttextbook______forteachingasaforeignlanguagecameoutinthe16thcentury.
最新回复
(
0
)