首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=xTAx=ax12+2x22-2x32+2bx1x3(b﹥0),其中二次型矩阵A的特征值之和为1,特征值之积为﹣12.(1)求a,b的值;(2)利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的正交矩阵.
设二次型f(x1,x2,x3)=xTAx=ax12+2x22-2x32+2bx1x3(b﹥0),其中二次型矩阵A的特征值之和为1,特征值之积为﹣12.(1)求a,b的值;(2)利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的正交矩阵.
admin
2020-06-05
49
问题
设二次型f(x
1
,x
2
,x
3
)=x
T
Ax=ax
1
2
+2x
2
2
-2x
3
2
+2bx
1
x
3
(b﹥0),其中二次型矩阵A的特征值之和为1,特征值之积为﹣12.(1)求a,b的值;(2)利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的正交矩阵.
选项
答案
(1)二次型f的矩阵为 A=[*] 设矩阵A的特征值为λ
1
,λ
2
,λ
3
,依题意有 [*] 由于b﹥0,解得a=1,b=2. (2)矩阵A的特征多项式为 |A-λE|=[*] =﹣(λ-2)
2
(λ+3) 所以得A的特征值为λ
1
=λ
2
=2,λ
3
=﹣3. 当λ
1
=λ
2
=2时,解方程组(A-2E)x=0.由 (A-2E)=[*] 得基础解系为p
1
=(0,1,0)
T
,p
2
=(2,0,1)
T
,p
1
,p
2
正交,将其单位化得 q
1
=(0,1,0)
T
,q
2
=[*] 当λ
3
=﹣3时,解方程组(A+3E)x=0.由 (A+3E)=[*] 得基础解系为p
3
=(1,0,﹣2)
T
,将其单位化得q
3
=[*].于是正交变换为 [*] 且把二次型f(x
1
,x
2
,x
3
)化为2y
1
2
+2y
2
2
-3y
3
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/QNv4777K
0
考研数学一
相关试题推荐
设f(x)是二阶常系数非齐次线性微分方程y’’+py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,().
已知α1,α2,α3,α4为3维非零列向量,则下列结论:①如果α4不能由α1,α2,α3线性表出,则α1,α2,α3线性相关;②如果α1,α2,α3线性相关,α2,α3,α4线性相关,则α1,α2,α4也线性相关;③如果r(α
实对称矩阵A的秩等于r,它有£个正特征值,则它的符号差为()
设三阶常系数齐次线性微分方程有特解y1=ex,y2=2xex,y3=3e-x,则该微分方程为().
设A,B是n阶方阵,X,Y,b是n×1矩阵,则方程组有解的充要条件是()
设α1,α2,α3,α4为四维非零列向量组,令A=(α1,α2,α3,α4),AX=0的通解为X=k(0,一1,3,0)T,则A*X=0的基础解系为().
设二次型f(χ1,χ2,χ3)=XTAX,已知r(A)=2,并且A满足A2-2A=0.则下列各标准二次型中可用正交变换化为厂的是().(1)2y12+2y22(2)2y12.(3)2y12+2y32.
设X,Y都服从标准正态分布,则().
(98年)设某次考试的考生成绩服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分.问在显著性水平0.05下,是否可以认为这次考试全体考生的平均成绩为70分?并给出检验过程.[附表]:t分布表.P{t(n)≤
随机试题
下列属于与组员沟通的技巧的是()。
在B-S完全不互溶的多级逆流萃取塔操作中,原用纯溶剂,现改用再生溶剂,其他条件不变,则对萃取操作的影响是()。
参照群体属于影响消费者购买行为的()
斑秃的形成多由于
卫生法基本原则中的国家监督是依据法律法规进行监督管理,通过监督管理( )
质量管理体系的八项原则,包括以顾客为关注点、全员参与原则、基于事实的决策方法、与供方互利的关系,以及()。
施工质量保证体系的运行,应以()为主线,以过程管理为重心,按照PDCA循环的原理展开控制。
企业自用土地使用权转换为采用公允价值模式计量的投资性房地产时形成的资本公积,待该项投资性房地产处置时,应转入()科目。
设X,Y为两个随机变量,且P(X≥0,Y≥0)=,则P{max(X,Y)≥0)=___________.
Email1To:DBLOnlineFrom:MarshaSmithSubject:OrderDearMr.Chapman,Wewouldliketobuy30Futuracomputers,model
最新回复
(
0
)