首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=xTAx=ax12+2x22-2x32+2bx1x3(b﹥0),其中二次型矩阵A的特征值之和为1,特征值之积为﹣12.(1)求a,b的值;(2)利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的正交矩阵.
设二次型f(x1,x2,x3)=xTAx=ax12+2x22-2x32+2bx1x3(b﹥0),其中二次型矩阵A的特征值之和为1,特征值之积为﹣12.(1)求a,b的值;(2)利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的正交矩阵.
admin
2020-06-05
36
问题
设二次型f(x
1
,x
2
,x
3
)=x
T
Ax=ax
1
2
+2x
2
2
-2x
3
2
+2bx
1
x
3
(b﹥0),其中二次型矩阵A的特征值之和为1,特征值之积为﹣12.(1)求a,b的值;(2)利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的正交矩阵.
选项
答案
(1)二次型f的矩阵为 A=[*] 设矩阵A的特征值为λ
1
,λ
2
,λ
3
,依题意有 [*] 由于b﹥0,解得a=1,b=2. (2)矩阵A的特征多项式为 |A-λE|=[*] =﹣(λ-2)
2
(λ+3) 所以得A的特征值为λ
1
=λ
2
=2,λ
3
=﹣3. 当λ
1
=λ
2
=2时,解方程组(A-2E)x=0.由 (A-2E)=[*] 得基础解系为p
1
=(0,1,0)
T
,p
2
=(2,0,1)
T
,p
1
,p
2
正交,将其单位化得 q
1
=(0,1,0)
T
,q
2
=[*] 当λ
3
=﹣3时,解方程组(A+3E)x=0.由 (A+3E)=[*] 得基础解系为p
3
=(1,0,﹣2)
T
,将其单位化得q
3
=[*].于是正交变换为 [*] 且把二次型f(x
1
,x
2
,x
3
)化为2y
1
2
+2y
2
2
-3y
3
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/QNv4777K
0
考研数学一
相关试题推荐
设则f(x)的间断点为x=___________。
向量组(Ⅰ)α1,α2,…,αs,其秩为r1,向量组(Ⅱ)β1,β2,…,βs,其秩为r2,且βi,i=1,2,…,s均可由向量组(Ⅰ)α1,α2,…,αs线性表出,则必有()
设n维行向量α=,矩阵A=E—αTα,B=E+2αTα,则AB=
设n阶矩阵A,B等价,则下列说法中,不一定成立的是()
设A,B均为n阶可逆矩阵,且(A+B)2=E,则(E+BA—1)—1=()
设n元二次型f(x1,x2,…,xn)=XTAX,其中AT=A.如果该二次型通过可逆线性变换X=CY可化为f(y1,y2,…,yn)=YTBY,则以下结论不正确的是().
二次型f=xTAx经过满秩线性变换x=Py可化为二次型yTBy,则矩阵A与B()
[2013年]设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22.
求BX=0的通解.
设(I)用变换x=t2将原方程化为y关于t的微分方程;(Ⅱ)求原方程的通解.
随机试题
新加香薷饮主治病证的临床表现有
A.牙源性B.腺源性C.损伤性D.血源性E.医源性边缘性颌骨骨髓炎感染多为
一般黏性土的承载力容许值可按土的液性指数和天然孔隙比确定。()
关于水泥试验结果评定,下列说法正确的有()。
以出让方式取得土地使用权的,转让房地产后,其土地使用权的最高使用年限为( )。
银行治理结构和制衡机制,对于健全公司治理和防范声誉风险都是至关重要的。然而,对于银行以及银行的责任人来说最终的保护方式是向所有员工逐步地灌输一种恪守高度的公平和道德行为准则的精神;让银行上下都明确一点,不可因某项交易,销售,贷款,客户和盈利机会而牺牲银行的
在一些人甚至包括教育界内部的一部分人的心目中,对于历史学科的价值与功能的认识,是存在偏见的。作为一名历史教育工作者,你认为历史教育的定位应是()。
1/2,1/2,1,3/2,(),4。
请在【答题】菜单下选择【进入考生文件夹】命令,并按照题目要求完成下面的操作。注意:以下的文件必须都保存在考生文件夹下。北京计算机大学组织专家对《学生成绩管理系统》的需求方案进行评审,为使参会人员对会议流程和内容有一个清晰的了解,需要会议
LookAfterYourVoiceOftenspeakersatameetingexperiencedrymouthsandaskforaglassofwater.Youcansolvetheprob
最新回复
(
0
)