首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n维向量组α1,α2,…,αs线性相关,并且α1≠0,证明存在1<k≤s,使得αk可用α1,…,αk-1线性表示.
设n维向量组α1,α2,…,αs线性相关,并且α1≠0,证明存在1<k≤s,使得αk可用α1,…,αk-1线性表示.
admin
2017-10-21
34
问题
设n维向量组α
1
,α
2
,…,α
s
线性相关,并且α
1
≠0,证明存在1<k≤s,使得α
k
可用α
1
,…,α
k-1
线性表示.
选项
答案
因为α
1
,α
2
,…,α
s
线性相关,所以存在不全为0的数c
1
,c
2
,…,c
s
,使得c
1
α
1
+c
2
α
2
+…+c
s
α
s
=0. 设c
k
是c
1
,c
2
,…,c
s
中最后一个不为0的数,即c
k
≠0,但i>k时,c
i
=0.则k≠l(否则α
1
=0, 与条件矛盾),并且有c
1
α
1
+c
2
α
2
+…+c
k
α
k
=0.则于 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/QOH4777K
0
考研数学三
相关试题推荐
用配方法化二次型f(x1,x2,x3)=x12+2x1x2+2x1x3—4x32为标准形.
设A是三阶实对称矩阵,r(A)=1,A2一3A=0,设(1,1,一1)T为A的非零特征值对应的特征向量.(1)求A的特征值;(2)求矩阵A.
设α,β为三维非零列向量,(α,β)=3,A=αβT,则A的特征值为__________.
设A,B是正定矩阵,C是可逆矩阵,下列矩阵不是正定矩阵的是().
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,AB≠0.证明:齐次线性方程组BY=0有零解,其中B=(β,β+α1,…,β+αs).
设方程组有解,则α1,α2,α3,α4满足的条件是_________.
设A为三阶矩阵,A的特征值为λ1=1,λ2=2,λ3=3,其对应的线性无关的特征向量分别为,求Anβ.
设A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=一2为A的一个特征值,其对应的特征向量为α3,下列向量中是A的特征向量的是().
设随机变量X,Y相互独立,且X~,又设向量组α1,α2,α3线性无关,求α1+α2,α2+Xα3,Yα1线性相关的概率。
用概率论方法证明:
随机试题
在人体抵抗力降低时,原本不致病的菌群变成致病菌群,引起的感染是
在通货膨胀时期,物价大幅度上涨,币值降低,货币流通速度()。
建立职业健康安全与环境管理体系的步骤包括()。
下列关于网上银行功能的表述,错误的是()。
“尊重和保护幼儿”是我国学前教育遵循的理论原则之一,试述该原则的含义。
教育年鉴、教育法规集、教育统计、教育调查报告、学术会议文件、资料汇编、名录、表谱以及地方志、墓志、碑刻等属于
A、 B、 C、 A
Inflationisaneconomicconditioninwhichpricesforconsumergoodsincrease,andthevalueofmoneyor【51】powerdecreases.Th
Heistheonlyoneofthestudentswho______finishedthetaskintime.
A、Thewomanwonderedwhythemandidn’treturnthebook.B、Thewomandoesn’tseemtoknowwhatthebookisabout.C、Thewomando
最新回复
(
0
)