首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(0,+∞)上二阶可导,且f"(x)>0,记un=f(n),n=1,2,…,又u1<u2,证明un=+∞.
设函数f(x)在(0,+∞)上二阶可导,且f"(x)>0,记un=f(n),n=1,2,…,又u1<u2,证明un=+∞.
admin
2016-01-15
50
问题
设函数f(x)在(0,+∞)上二阶可导,且f"(x)>0,记u
n
=f(n),n=1,2,…,又u
1
<u
2
,证明
u
n
=+∞.
选项
答案
对函数f(x)分别在区间[k,k+1](k=1,2,…,n,…),上使用拉格朗日中值定理 u
1
一u
2
=f(2)一f(1)=f’(ξ)>0,1<ξ
1
<2, … u
n—1
一u
n—2
=f(n一1)一f(n一2)=f’(ξ
n—2
),n一2<ξ
n—2
<n一1, u
n
一u
n—1
=f(n)—f(n一1)=f’(ξ
n—1
),n一1<ξ
n—1
<n. 因f"(x)>0,故f’(x)严格单调增加,即有 f’(ξ
n—1
)>f’(ξ
n—2
)>…>f’(ξ
2
)>f’(ξ
1
)=u
3
一u
1
, 则 u
n
=(u
n
一u
n—1
)+(u
n—1
—u
n—2
)+…+(u
2
一u
1
)+u
1
=f’(ξ
n—1
)+f’(ξ
n—2
)+…+f’(ξ
1
)+u
1
>f’(ξ
1
)+f’(ξ
1
)+…+f’(ξ
1
)+u
1
=(n一1)(u
2
一u
1
)+u
1
, 于是有[*]=+∞.
解析
转载请注明原文地址:https://kaotiyun.com/show/QWw4777K
0
考研数学一
相关试题推荐
A是三阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
设二次型若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y21+y22.
箱内有6个球,其中红、白、黑球的个数分别为1,2,3个,现从箱中随机的取出2个球,记X为取出的红球个数,Y为取出的白球个数.求随机变量(X,Y)的概率分布;
设f(x)在[0,1]上连续,在(0,1)内存在二阶导数,且f(0)=0,f(1)=1,证明:对任意的a>0,b>0,存在ξ,η∈(0,1),使得.
设f(x)二阶可导,且f"(x)>0,证明:当x≠0时,f(x)>x.
一质点从时间t=0开始做直线运动,移动了单位距离使用了单位时间,且初速度和末速度都为零,证明:在运动过程中存在某个时刻点,其加速度绝对值不小于4.
位于上半平面的上凹曲线y=y(x)过点(0,2),在该点处的切线水平,曲线上任意一点(x,y)处的曲率与及1+y’2之积成反比,比例系数为,求y=y(x).
设y(x)是微分方程y"+(x-1)y’+x2y=ex满足初始条件y(0)=0,y’(0)=1的解,则().
设f(x)在x=2处连续,且,则曲线y=f(x)在(2,f(2))处的切线方程为________。
设f(x)=(Ⅰ)讨论f(x)的连续性,若有间断点并指出间断点的类型;(Ⅱ)判断f(x)在(—∞,1]是否有界,并说明理由.
随机试题
结石性胆囊炎临床症状明显者的根本治疗方法应用
有关锐利度和模糊度的叙述,错误的是
下列穴位中,可治疗痔疮的是
A.左侧卧位B.坐位身体前倾C.仰卧位D.右侧卧位E.从卧位或下蹲位迅速站立下列疾病,听诊时采用上述哪种呼吸或体位,杂音最清晰
背景资料:某大型水利水电工程由政府投资兴建。项目法人委托某招标代理公司代理施工招标。招标代理公司依据有关规定确定该项目采用公开招标方式招标,招标公告在当地政府规定的招标信息网上发布。招标文件中规定:投标担保可采用投标保证金或投标保函方式担保。评标方法采用
各相关机关和单位在实施工程建设强制性标准的监督管理中的作用是()。
按照《建设工程质量管理条例》的规定,( )单位不得转包或者违法分包工程项目。
下面是天津、上海、北京、重庆四城市某日的天气预报。已知四城市有三种天气情况,天津和北京的天气相同,上海和重庆当天都没有雨,那么,以下判断不正确的是( )
一只蚂蚁发现了一只死螳螂,立刻回洞找来10只蚂蚁搬,搬不动;然后每只蚂蚁回去各找来10只蚂蚁,还是搬不动;于是每只蚂蚁又回去找来10个伙伴,大家齐心协力,终于把死螳螂拖回洞里。问一共有多少只蚂蚁参加了搬运?
MeaninginLiteratureI.AUTHOR—Interpretauthor’sintendedmeaningbya)Readingotherworksby【T1】_____【T1】______b)Knowingc
最新回复
(
0
)