首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
自考
设α1,α2是齐次线性方程组Ax=0的一个基础解系,证明β1=α1+2α2,β2=α1+α2也是方程组Ax=0的一个基础解系.
设α1,α2是齐次线性方程组Ax=0的一个基础解系,证明β1=α1+2α2,β2=α1+α2也是方程组Ax=0的一个基础解系.
admin
2018-08-22
54
问题
设α
1
,α
2
是齐次线性方程组Ax=0的一个基础解系,证明β
1
=α
1
+2α
2
,β
2
=α
1
+α
2
也是方程组Ax=0的一个基础解系.
选项
答案
由Aα
1
=0,Aα
2
=0,得 Aβ
1
=A(α
1
+2α
2
)=0,Aβ
2
=A(2α
1
+α
2
)=0, 可知β
1
,β
2
也是方程组Ax=0的解. 设有常数k
1
,k
2
使得k
1
β
1
+k
2
β
2
=0,即 k
1
(α
1
+2α
2
)+k
2
(2α
1
+α
2
)=0, 整理为(k
1
+2k
2
)α
1
+(2k
1
+k
2
)α
2
=0. 由于α
1
,α
2
线性无关,得到[*],推出k
1
=k
2
=0, 因此β
1
,β
2
线性无关。 由于α
1
,α
2
是Ax=0的基础解系,故该方程组的任意两个线性无关的解都是它的基础解系.从而β
1
,β
2
也是Ax=0的基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/QayR777K
本试题收录于:
线性代数(经管类)题库公共课分类
0
线性代数(经管类)
公共课
相关试题推荐
ThecountryisIndia.Acolonialofficialandhiswifearegivingalargedinnerparty.Theyareseatedwiththeirguests—office
e_________n.事业,企(事)业单位
标准;准则n.c________
下列的线状图表显示了从1990年至1999年四个欧洲国家车辆被盗的情况。请分析报道其相关主要数据特征,有必要时可能需要比较数据间的区别,总结图表的信息,以ComparisonofCarTheft为题,写一篇150词左右的英语短文。
找出这段文字中被驳斥的论点与用来反驳论点的正面论点的句子。本段中的“更譬诸操舟”之例证明了什么论点?
此诗的抒情主人公是谁?概括这两节诗的内容,并说明这两节诗各依托“水神祭祀”中哪两个基本步骤?
这时,如看到他们各自的军乐队,在各方突起的木片上排成方阵,威武雄壮地高奏国歌,以振奋前仆后继的前线将士,并激励起那些奄奄一息的光荣斗士,我不会感到诧异。我自已是热血沸腾,仿佛它们是人。这里表达出作者怎样的感情?
这里表现出孺人怎样的性格特征?这里运用了怎样的人物描写方法?达到了什么效果?
已知线性方程组求当a为何值时,方程组无解、有解.
用初等变换法将下列二次型化为标准型并求正、负惯性指数:f(x1,x2,x3)=x12+2x22+2x1x2+2x2x3+4x32.
随机试题
糖皮质激素对糖代谢的影响表现在
甲公司以100万元的价格向乙公司订购一台机床,根据合同约定,2014年4月1日,甲公司签发一张以乙公司为收款人、金额为100万元的银行承兑汇票,承兑人为A银行,到期日为2014年7月1日。2014年4月4日,乙公司的银行承兑汇票丢失,被B拾得。4月5日,B
变压器套管脏污有什么害处?
简述专利的基本含义及其特征。
A、上消化道出血B、阿米巴痢疾C、痔或肛裂D、急性细菌性痢疾E、急性出血性坏死性肠炎柏油样便见于
属于活疫苗的是
论分工给组织带来的利益和弊端。(2010年论述题)
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,且α1=(1,一1,1)。是A的属于λ1的一个特征向量.记B=A5一4A3+E,其中E为3阶单位矩阵.验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;
下面数据结构中,属于非线性的是()。
•Readthearticlebelowaboutacriticalconcerninmergerandacquisitionstrategies.•Choosethebestwordorphrasetofill
最新回复
(
0
)