首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(α1,α2,α3,α4,α5),其中α1,α3,α5线性无关,且α2=3α1-α3-α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
设A=(α1,α2,α3,α4,α5),其中α1,α3,α5线性无关,且α2=3α1-α3-α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
admin
2018-05-17
52
问题
设A=(α
1
,α
2
,α
3
,α
4
,α
5
),其中α
1
,α
3
,α
5
线性无关,且α
2
=3α
1
-α
3
-α
5
,α
4
=2α
1
+α
3
+6α
5
,求方程组AX=0的通解.
选项
答案
因为α
1
,α
3
,α
5
线性无关,又α
2
,α
4
可由α
1
,α
3
,α
5
线性表示,所以r(A)=3,齐次线性方程组AX=0的基础解系含有两个线性无关的解向量. 由α
2
=3α
1
-α
3
-α
5
,α
4
=2α
1
+α
3
+6α
5
得方程组AX=0的两个解为 ξ
1
=(3,-1,-1,0,-1)
T
,ξ
2
=(2,0,1,-1,6)
T
故AX=0的通解为k
1
(3,-1,-1,0,-1)
T
+k
2
(2,0,1,-1,6)
T
(k
1
,k
2
为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/Qgk4777K
0
考研数学二
相关试题推荐
设函数f(x)在[0,1]上连续,(0,1)内可导,且3∫2/31f(x)dx=f(x),证明在(0,1)内存在一点,使f’(C)=0.
设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则().
曲线上对应于t=π/4的点处的法线斜率为_________.
已知λ1=6,λ2=λ3=3是实对称矩阵A的三个特征值.且对应于λ2=λ3=3的特征向量为a2=(-1,0,1)T,a3=(1,-2,1)T,求A对应于λ1=6的特征向量及矩阵A.
设A为n阶方阵,A*为A的伴随矩阵,且A11≠0,证明:方程组Ax=b(b≠0)有无穷多解的充要条件中b为A*x=0的解.
如果0<β<a<π/2,证明:
设n阶矩阵A与B等价,则必有().
(2007年试题,23)设线性方程组(1)与方程x1+x2+x3=a-1(2)有公共解,求a的值及所有公共解.
(1)比较∫01|lnt|[ln(1+t)]ndt与∫01t2|lnt|dt(n=1,2,…)的大小,说明理由;(2)记un=∫01|lnt|[ln(1+t)ndt(n=1,2,…),求极限.
(2010年)(Ⅰ)比较∫01|lnt|[ln(1+t)]ndt与∫01tn|lnt|dt(n=1,2,…)的大小,说明理由;(Ⅱ)记un=∫01|lnt|[ln(1+t)]ndt(n=1,2,…),求极限un.
随机试题
现场干预试验必须具备哪些基本要素
蟾酥的性状特征有()
控释膜保护膜
“应收票据”项目应根据“应收票据”科目的期末余额填列。()
以下不属于个别督导的技巧是()。
试论缔约过失责任。
吉尼斯世界纪录和趣味有关,也和无聊有关。27个法国人用牙签搭建了微型的埃菲尔铁塔,一个美国人收集了600余双匡威运动鞋,一个古巴人做出了世界上最长的雪茄。吉尼斯就是无聊大观园,没有想不到,也不存在做不到。但太无聊的纪录连吉尼斯也会望而生畏,有人注册了互联网
材料1建设社会主义现代化国家、实现中华民族伟大复兴,是我们党孜孜以求的宏伟目标。自成立以来,我们党就团结带领人民为此进行不懈奋斗。随着改革开放逐步深化,我们党对制度建设的认识越来越深入。1980年,邓小平同志在总结“文化大革命”的教训时就指出:“
办事员小李需要整理一份有关高新技术企业的政策文件呈送给总经理查阅。参照“示例1.jpg”“示例2.jpg”,利用考生文件夹下提供的相关素材,按下列要求帮助小李完成文档的编排:在标题段落“附件1:国家重点支持的高新技术领域”的下方插入以图标方式显示的文档
【B1】【B12】
最新回复
(
0
)