首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(0,+∞)三次可导,且当x∈(0,+∞)时 |f(x)|≤M0, |f"’(x)|≤M3, 其中M0,M3为非负常数,求证f"(x)在(0,+∞)上有界.
设f(x)在(0,+∞)三次可导,且当x∈(0,+∞)时 |f(x)|≤M0, |f"’(x)|≤M3, 其中M0,M3为非负常数,求证f"(x)在(0,+∞)上有界.
admin
2017-10-23
25
问题
设f(x)在(0,+∞)三次可导,且当x∈(0,+∞)时
|f(x)|≤M
0
, |f"’(x)|≤M
3
,
其中M
0
,M
3
为非负常数,求证f"(x)在(0,+∞)上有界.
选项
答案
分别讨论x>1与0<x≤1两种情形. 1)当x>1时考察二阶泰勒公式 [*] 2)当0<x≤1时对f"(x)用拉格朗日中值定理,有 f"(x)=f"(x)一f"(1)+f"(1)=f"’(ξ)(x一1)+f"(1),其中ξ∈(x,1). 从而 |f"(x)|≤f"’(ξ)||x一1|+1f"(1)|≤M
3
+|f"(1)| (x∈(0,1]) 综合即知f"(x)在(0,+∞)上有界.
解析
转载请注明原文地址:https://kaotiyun.com/show/REX4777K
0
考研数学三
相关试题推荐
设f(x)连续且关于x=T对称,a<T<b.证明:∫abf(x)dx(z)dx=2∫Tbf(t)dx+∫a2T—bf(x)dx.
设f(x)为连续函数,证明:
求函数的最大值与最小值.
设A是三阶矩阵,其三个特征值为,1,则|4A*+3E|=__________.
[*]故u仅是r的函数,即u不含θ与φ.
设A为m阶正定矩阵,B为m×n实矩阵.证明:BTAB正定的充分必要条件是r(B)=n.
设总体X~U(θ1,θ2),X1,X2,…,Xn是来自总体X的样本,求θ1,θ2的矩估计和最大似然估计.
设总体X~N(0,σ2),X1,X2,…,Xn为来自总体X的简单随机样本,所服从的分布.
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.(1)写出f(x)在x=c处带拉格朗日型余项的一阶泰勒公式;(2)证明:|f’(c)|≤2a+.
某保险公司多年的统计资料表明,在索赔中被盗索赔户占20%。以X表示在随机抽查的100个索赔户中因被盗向保险公司索赔的户数。利用棣莫佛一拉普拉斯定理,求被盗索赔户不少于14户且不多于30户的概率的近似值。
随机试题
通过招投标方式订立建设工程合同,一般要经过()
______yourcomingtoseeme,Iwouldhavebeenverylonely.
小王17岁,初中毕业后种田为生,现欲将其承包的土地转包给他人,但是,他未满18周岁,不能独立签订这种重大的合同。()
亚急性细菌性心内膜炎的赘生物中,下列哪一项是不正确的
如果中央银行采取扩张的货币政策,可以()。
下列资产中,属于非货币性资产的有()。
下列不属于间接融资工具的是()。
________的荷塘上面,弥望的是田田的叶子。叶子出水很高,像亭亭的舞女的裙。层层的叶子中间,零星地点缀着些白花,有袅娜地开着的,有羞涩地打着朵儿的;正如一粒粒的________,又如碧天里的________,又如刚出浴的________。填入画横线部分
在考生文件夹下,“sampl.accdb”数据库文件中已建立好表对象“tStud”和“tScore”、宏对象“mTest”和窗体“fTest”。试按以下要求,完成各种操作:将窗体“f]rest”中名为“bt2”的命令按钮,其宽度设置为2厘米、左边界设置
Thedevelopmentofnationaleconomydependstoagreatextentonscienceandtechnology.
最新回复
(
0
)