设f(x)在(0,+∞)三次可导,且当x∈(0,+∞)时 |f(x)|≤M0, |f"’(x)|≤M3, 其中M0,M3为非负常数,求证f"(x)在(0,+∞)上有界.

admin2017-10-23  25

问题 设f(x)在(0,+∞)三次可导,且当x∈(0,+∞)时
    |f(x)|≤M0,  |f"’(x)|≤M3
其中M0,M3为非负常数,求证f"(x)在(0,+∞)上有界.

选项

答案分别讨论x>1与0<x≤1两种情形. 1)当x>1时考察二阶泰勒公式 [*] 2)当0<x≤1时对f"(x)用拉格朗日中值定理,有 f"(x)=f"(x)一f"(1)+f"(1)=f"’(ξ)(x一1)+f"(1),其中ξ∈(x,1). 从而 |f"(x)|≤f"’(ξ)||x一1|+1f"(1)|≤M3+|f"(1)| (x∈(0,1]) 综合即知f"(x)在(0,+∞)上有界.

解析
转载请注明原文地址:https://kaotiyun.com/show/REX4777K
0

最新回复(0)