首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求下列区域Ω的体积: (I)Ω:x2+y2≤a2,z≥0,z≤mx(m>0); (Ⅱ)Ω:由y2=a2一az,x2+y2=ax,z=0(a>0)围成; (Ⅲ)Ω:由z=x2+y2,x+y+z=1所围成; (Ⅳ)Ω:由曲面z=y2(y≥0),z=4y2(y≥
求下列区域Ω的体积: (I)Ω:x2+y2≤a2,z≥0,z≤mx(m>0); (Ⅱ)Ω:由y2=a2一az,x2+y2=ax,z=0(a>0)围成; (Ⅲ)Ω:由z=x2+y2,x+y+z=1所围成; (Ⅳ)Ω:由曲面z=y2(y≥0),z=4y2(y≥
admin
2017-08-18
53
问题
求下列区域Ω的体积:
(I)Ω:x
2
+y
2
≤a
2
,z≥0,z≤mx(m>0);
(Ⅱ)Ω:由y
2
=a
2
一az,x
2
+y
2
=ax,z=0(a>0)围成;
(Ⅲ)Ω:由z=x
2
+y
2
,x+y+z=1所围成;
(Ⅳ)Ω:由曲面z=y
2
(y≥0),z=4y
2
(y≥0),z=x,z=2x,z=4所围成.
选项
答案
(I)D
xy
:x
2
+y
2
≤a
2
, x≥0, Ω={(x,y,z)| 0≤z≤mx, (x,y)∈D
xy
}. [*] (Ⅲ)由[*]消去z得x
2
+x+y
2
+y=1,即[*].于是Ω在Oxy 平面上的投影区域(如图9.28)是D={(x,y)|[*]),围成Ω区域的上曲面是 z=1一x—y,下曲面是z=x
2
+y
2
,因此Ω的体积 [*] [*] [Ⅳ] 如图9·29,Ω={(x,y,z)|[*] , (z,x)∈D
zx
}, D
zx
={(x,y,z)| [*]≤x≤z,0≤z≤4}. [*] [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/REr4777K
0
考研数学一
相关试题推荐
(1997年试题,三)在某一人群中推广新技术是通过其中已掌握新技术的人进行的.设该人群的总人数为N,在t=0时刻已掌握新技术的人数为x0,在任意时刻t已掌握新技术的人数为x(t)(将x(t)视为连续可微变量),其变化率与已掌握新技术人数之积成正比,比例常数
(2011年试题,一)设数列{an}单调减少,无界,则幂级数的收敛域为().
设数列{an},{bn}满足0<an<π/2,0<π/2,cosan-an=cosbn,且级数收敛.
设S为上半球面x2+y2+z2=a2,z≥0,a>0.下列第一型或第二型曲面积分不为零的是()
设y(x)是微分方程y’’+(x+1)y’+x2y=ex的满足y(0)=0,3,y’(0)=1的解,并设存在且不为零,则正整数k=________,该极限值=________.
函数u=xyz2在条件x2+y2+z2=4(x>0,y>0,z>0)下的最大值是
设封闭曲面S:x2+y2+z2=R2>0),法向量向外,则__________.
设函数f(x)连续且恒大于零,其中Ω(t)={x,y,z)|x2+y2+z2≤t2},D(t)={(x,y)|x2+y2≤t2}.(1)讨论F(t)在区间(0,+∞)内的单调性.(2)证明当t>0时,F(t)>G(t).
设D由抛物线y=x2,y=4x2及直线y=1所围成.用先x后y的顺序将I=f(x,y)dxdy化成累次积分.
改变二重积分的累次积分的顺序f(x,y)dy+,f(x,y)dy;
随机试题
A.脐部圆形包块,加腹压后包块突出,平卧时包块消失B.卵黄管的脐端未闭,遗留较短的盲管C.脐带周围发生缺损,腹腔内脏脱出体外D.出生后见胃肠突出于腹壁外,脐和脐带正常,腹壁裂孔在脐的右侧并为纵向E.卵黄管的脐端有残留的黏膜形成息肉样红色突起,少量液
A、祛暑利湿,补气生津B、祛暑除湿,和胃消食C、祛暑解表,清热生津D、解表化湿,理气和中E、清热解毒,利湿化浊六合定中丸的功效()。
第二类精神药品处方印刷用纸为
抢救青霉素过敏性休克的首选药物是
EVA、PE类聚合物改性沥青混合料的废弃温度为()。
某公司为获得一项工程合同,拟向工程发包方的有关人员支付好处费8万元,公司市场部持公司的批示到财务部领取该笔款项。财务部经理谢某认为该项支出不符合有关规定,但考虑到公司主要领导已作了批示,遂同意拨付了款项。对谢某做法的下列认定中正确的是()。
我国对资本主义工商业进行社会主义改造的政策是和平赎买。()
小刚在一次演讲比赛中有五名裁判给他打分,除去最低分外,他的平均成绩是96分;加上最低分,它的平均成绩下降了3分。问其中打的最低分是多少?()
设f(x)连续,其中V={(x,y,z)|x2+y2≤t2,0≤z≤h}(t>0),求其中,[x]表示不超过x的最大整数.
WhatcanbecitedtoshowMr.Eliasson’sunderstandingoftotal-immersionart?
最新回复
(
0
)