首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2000年试题,二)设n维列向量组α1,…,αm(m
(2000年试题,二)设n维列向量组α1,…,αm(m
admin
2013-12-27
37
问题
(2000年试题,二)设n维列向量组α
1
,…,α
m
(m
1,…,β
m
线性无关的充分必要条件为( ).
选项
A、向量组α
1
……α
m
可由向量组β
1
,…,β
m
线性表示
B、向量组β
1
,…,β
m
可由向量组α
1
……α
m
线性表示
C、向量组α
1
……α
m
与向量组β
1
,…,β
m
等价
D、矩阵A=(α
1
……α
m
)与矩阵B=(β
1
,…,β
m
)等价
答案
D
解析
根据题设,逐一分析各个选项.关于A,它是向量组β
1
β
2
……β
m
线性无关的充分条件,但不是必要条件;关于B,它与β
1
β
2
……β
m
线性无关无直接联系;关于C,它也是向量组β
1
β
2
……β
m
线性无关的充分但非必要条件;D是β
1
β
2
……β
m
线性无关的充分必要条件,因为矩阵A与B等价的充要条件是经过初等变换后形成的标准形相同.综上,选D.
注意两个矩阵等价与两个向量组等价有本质差别.两个矩阵等价仅仅是秩相等,而两个向量组等价则要求它们能相互线性表示.一般而言,向量组α
1
,α
2
……α
s
与向量组β
1
β
2
……β
t
等价→矩阵A=(α
1
,α
2
……α
s
)与矩阵B=(β
1
β
2
……β
t
)等价,但反过来并不成立.
转载请注明原文地址:https://kaotiyun.com/show/lC54777K
0
考研数学一
相关试题推荐
已知线性方程组的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T.试写出线性方程组的通解,并说明理由.
求解下列非齐次线性方程组:
从矩阵A中划去一行得到矩阵B,问A,B的秩的关系怎样?
用初等行变换把下列矩阵化为行最简形矩阵:
设f(x)在区间[0,1]上连续,在(0,1)内可导,且,f(1)=0.证明:至少存在一点ξ∈(0,1),使(1+ξ2)(arctanξ)f’(ξ)=-1.
(Ⅰ)设连续函数f(x)>0,且f(-x)f(x)≡1,又g(x)为偶函数,证明:(Ⅱ)计算
求抛物线6y=x2从点(0,0)到点(4,)之间的弧长.
设则t=0时曲线上对应点处的法线方程为________.
某湖泊水量为V,每年排入湖泊中内含污染物A的污水量为,流入湖泊内不含A的水量为,流出湖的水量为,设1999年底湖中A的含量为5m0,超过国家规定指标,为了治理污染,从2000年初开始,限定排入湖中含A的污水浓度不超过,问至多经过多少年,湖中污染物A的含量降
(2002年试题,六)设函数f(x)在(一∞,+∞)内具有一阶连续导数,L是上半平面(y>0)内的有向分段光滑曲线,其起点为(a,b),终点为(c,d)记当ab=cd时,求I的值.
随机试题
重症肌无力的主要信号转导障碍是
关于CT图像的叙述,正确的是
腹部前后位片不能够观察
男,30岁。颜面浮肿3天,无力,尿400ml/24h,血压130/80mmHg,血红蛋白130g/L,尿蛋白(+++),红细胞20~40个/HP,颗粒管型0~2个/HP,可能性最大的诊断是
民间个人之间借贷往来作为一种信用形式,存在的局限性主要表现在()。
城市供电工程分区规划中的主要内容包括()。
根据管理方格理论,领导者高度重视生产任务的完成和生产效率的提高,但不关心人的管理方式是()。
下列关于女职工保护和生育保险制度的说法,正确的有()。
你们市经过科学规划论证,把主干道的树砍了,拓宽路面,群众不满意来阻拦,人群聚集,越来越多,阻碍了交通。假如你是工作人员,会怎么处理?
洗钱罪是指明知是()的违法所得及其产生的收益,而采用掩饰、隐瞒其来源和性质的方法,从而使其“合法化"的行为。
最新回复
(
0
)