首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3 求矩阵A的特征值;
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3 求矩阵A的特征值;
admin
2016-05-31
21
问题
设A为3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量,且满足Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3α
3
求矩阵A的特征值;
选项
答案
由已知可得 A(α
1
,α
2
,α
3
)=(α
1
+α
2
+α
3
,2α
2
+α
3
,2α
2
+3α
3
)=(α
1
,α
2
,α
3
)[*] 记P
1
=(α
1
,α
2
,α
3
),B=[*],则有AP
1
=P
1
B. 由于α
1
,α
2
,α
3
线性无关,即矩阵P
1
可逆, 所以[*]=B,因此矩阵A与B相似,则 [*] 矩阵B的特征值是1,1,4,由相似矩阵的性质,故矩阵A的特征值为1,1,4.
解析
转载请注明原文地址:https://kaotiyun.com/show/RQT4777K
0
考研数学三
相关试题推荐
“法令行则国治,法令弛则国乱。”法治是治国理政的基本方式,更是现代国家的一个特征、一个标志。习近平同志指出,综观世界近现代史,凡是顺利实现现代化的国家,没有一个不是较好解决了法治和人治问题的。相反,一些国家虽然也一度实现快速发展,但并没有顺利迈进现代化的门
制定和通过了彻底实行土地改革的《中国土地法大纲》的是()。
这次新冠肺炎疫情,是新中国成立以来在我国发生的传播速度最快.感染范围最广、防控难度最大的一次重大突发公共卫生事件。对我们来说,这是一次危机,也是一次大考。实践证明,党中央对疫情形势的判断是准确的,各项工作部署是及时的,采取的举措是有力有效的。防控工作取得的
一个均匀的四面体,其第一面染红色,第二面染白色,第三面染黑色,而第四面染红、白、黑三种颜色,以A、B、C分别记投掷一次四面体,底面出现红、白、黑的三个事件,判断A、B、C是否两两独立,是否相互独立.
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:(1)t为何值时,向量组α1,α2,α3线性相关?(2)t为何值时,向量组α1,α2,α3线性无关?
设A,B是同阶正定矩阵,则下列命题错误的是().
设向量组α1,α2,…,αm线性无关,向量β1可用它们线性表示,β2不能用它们线性表示,证明向量组α1,α2,…,αm,λβ1+β2(λ为常数)线性无关.
如果n个事件A1,A2,…,An相互独立,证明:将其中任何m(1≤m≤n)个事件改为相应的对立事件,形成的新的n个事件仍然相互独立;
设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t),求:(1)t为何值时,向量组α1,α2,α3线性相关;(2)t为何值时,向量组α1,α2,α3线性无关;(3)当线性相关时,将α3表为α1和α2的线性组合.
随机试题
被视为“近代中国开眼看世界之第一人”是()
开放性气胸的特点是()
信用证业务处理的是与单据有关的货物。()
甲部门是一个利润中心。下列财务指标中,最适合用来评价该部门经理业绩的是()。
你喜欢什么样的学生?
犯罪嫌疑人不讲真实姓名、住址,身份不明的,其侦查羁押期限的计算应从()。
“无现金社会”的现象之所以引人关注,主要是由于近年来移动支付发展迅猛,覆盖了人们的衣食住行,普及到了城镇的角角落落,使一部分人改变了使用现金的习惯。积极推进“无现金社会”建设意义深远:首先,有助于降低金融服务的门槛,更好地促进经济发展;其次,有助于减少和降
试述孔雀帝国的各项制度。
在考生文件夹下,打开文档WORD1.DOCX,按照要求完成下列操作并以该文件名(WORD1.DOCX)保存文档。将正文各段(“美圆,……面额的钞票。”),左右各缩进2字符,悬挂缩进2字符,行距18磅。
Self-PublishingA)Toawriter,self-publishingisanincrediblypowerfulandalluringconcept.Onthesimplestlevel,it’sani
最新回复
(
0
)