首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知下列非齐次线性方程组(I),(Ⅱ): 当方程组(Ⅱ)中的参数m,n,t为何值时,方程组(I)与(Ⅱ)同解.
已知下列非齐次线性方程组(I),(Ⅱ): 当方程组(Ⅱ)中的参数m,n,t为何值时,方程组(I)与(Ⅱ)同解.
admin
2019-12-26
49
问题
已知下列非齐次线性方程组(I),(Ⅱ):
当方程组(Ⅱ)中的参数m,n,t为何值时,方程组(I)与(Ⅱ)同解.
选项
答案
将(I)的通解代入(Ⅱ)的第一个方程,得 (-2+k)+m(-4+k)-(-5+2k)-k=-5, 比较上式两端关于k的同次幂的系数,解得m=2. 再将(I)的通解代入(Ⅱ)的第二个方程,得 n(-4+k)-(-5+2k)-2k=-11, 比较上式两端关于k的同次幂的系数,解得n=4. 再将(I)的通解代入(Ⅱ)的第三个方程,得 (-5+2k)-2k=-t+1. 解得t=6. 因此,当m=2,n=4,t=6时,方程组(I)的全部解都是方程组(Ⅱ)的解.这时,方程组(Ⅱ)化为 [*] 设方程组(Ⅱ)的系数矩阵为A
2
,增广矩阵为B
2
,对B
2
作初等行变换,得 [*] 解得方程组(Ⅱ)的通解为 [*] 可见,当m=2,n=4,t=6时,方程组(I)与方程组(Ⅱ)的解完全相同,即方程组(I)与方程组(Ⅱ)同解.
解析
转载请注明原文地址:https://kaotiyun.com/show/RTD4777K
0
考研数学三
相关试题推荐
设A是m×n矩阵,E是n阶单位阵,矩阵B=-aE+ATA是正定阵,则a的取值范围是________
设二次型f(x1,x2,x3)=ax12+ax22+(a—1)x32+2x1x3—2x2x3。(Ⅰ)求二次型f的矩阵的所有特征值;(Ⅱ)若二次型f的规范形为yx12+y22,求a的值。
已知3阶矩阵A的第1行元素全是1,且(1,1,1)T,(1,0,-1)T,(1,-1,0)T是A的3个特征向量,求A.
以y=C1e一2x+C2ex+cosx为通解的二阶常系数非齐次线性微分方程为________.
满足fˊ(x)+xfˊ(-x)=x的函数f(x)=_________.
微分方程xy’+y=0满足初始条件y(1)=2的特解为__________.
设λ1、λn分别为n阶实对称矩阵的最小、最大特征值,X1,Xn分别为对应于λ1、λn的特征向量,记f(X)=XTAX/XTX,X∈Rn,X≠0二次型f(X)=XTAX在XTX=1条件下的最大(小)值等于实对称矩阵A的最大(小)特征值.求三元函数f(x
设f(x)连续,且,a为常数,则
设f(x)在x=a的邻域内二阶可导且f’(a)≠0,则
设求f’(x).
随机试题
下面是一份丰田公司的报告:临时报告和正规报告有什么不同?
中唐古文运动主要反对()
驱虫药中不宜入煎剂的药物是
以下有关阿莫西林的叙述,正确的是()。
下列条件属于地面水环境影响评价工作级别划分的依据的是()。
要约邀请不是合同成立过程中的必经过程,下列属于要约邀请的是( )。
流动性覆盖率(LCR)旨在确保商业银行具有充足的合格优质流动性资产,能够在银监会规定的流动性压力情景下,通过变现这些资产满足未来至少()日的流动性需求。
国学大师周国平说过:“何必用舞台上的_________来掩盖生活中的_________!”确实,命运多舛,世事无常,而真味是淡。一如当烟云褪尽,尘埃落定,邈远静谧处一颗心脏噗噗跳动轻微而有力的声音,便是生命最纯净而真挚的呼告。我们只需,俯下身,______
根据法律规定,人民法院对有些案件,依当事人的申请,可以裁定先予执行。下列选项中,不必裁定先予执行的是()。
Imagine,ifyouwill,theaveragegamesplayer.Whatdoyousee?Aguywhonevergrewup?Oranervous18-year-oldpushingbutto
最新回复
(
0
)