已知下列非齐次线性方程组(I),(Ⅱ): 当方程组(Ⅱ)中的参数m,n,t为何值时,方程组(I)与(Ⅱ)同解.

admin2019-12-26  32

问题 已知下列非齐次线性方程组(I),(Ⅱ):
   
当方程组(Ⅱ)中的参数m,n,t为何值时,方程组(I)与(Ⅱ)同解.

选项

答案将(I)的通解代入(Ⅱ)的第一个方程,得 (-2+k)+m(-4+k)-(-5+2k)-k=-5, 比较上式两端关于k的同次幂的系数,解得m=2. 再将(I)的通解代入(Ⅱ)的第二个方程,得 n(-4+k)-(-5+2k)-2k=-11, 比较上式两端关于k的同次幂的系数,解得n=4. 再将(I)的通解代入(Ⅱ)的第三个方程,得 (-5+2k)-2k=-t+1. 解得t=6. 因此,当m=2,n=4,t=6时,方程组(I)的全部解都是方程组(Ⅱ)的解.这时,方程组(Ⅱ)化为 [*] 设方程组(Ⅱ)的系数矩阵为A2,增广矩阵为B2,对B2作初等行变换,得 [*] 解得方程组(Ⅱ)的通解为 [*] 可见,当m=2,n=4,t=6时,方程组(I)与方程组(Ⅱ)的解完全相同,即方程组(I)与方程组(Ⅱ)同解.

解析
转载请注明原文地址:https://kaotiyun.com/show/RTD4777K
0

最新回复(0)