首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)=(akcoskx+bksinkx),其中ak,bk(k=1,2,…,n)为常数.证明: (Ⅰ)f(x)在[0,2π)必有两个相异的零点; (Ⅱ)f(m) (x)在[0,2π)也必有两个相异的零点
设f(x)=(akcoskx+bksinkx),其中ak,bk(k=1,2,…,n)为常数.证明: (Ⅰ)f(x)在[0,2π)必有两个相异的零点; (Ⅱ)f(m) (x)在[0,2π)也必有两个相异的零点
admin
2018-06-27
53
问题
设f(x)=
(a
k
coskx+b
k
sinkx),其中a
k
,b
k
(k=1,2,…,n)为常数.证明:
(Ⅰ)f(x)在[0,2π)必有两个相异的零点;
(Ⅱ)f
(m)
(x)在[0,2π)也必有两个相异的零点
选项
答案
(Ⅰ)令F(x)=[*],显然,F’(x)=f(x).由于F(x)是以2π为周期的可导函数,故F(x)在[0,2π]上连续,从而必有最大值与最小值.设F(x)分别在x
1
,x
2
达到最大值与最小值,且x
1
≠x
2
,x
1
,x
2
∈[0,2π),则F(x
1
),F(x
2
)也是F(x)在(-∞,+∞)上的最大值,最小值,因此x
1
,x
2
必是极值点.又F(x)可导,由费马定理知F’(x
1
)=f(x
1
)=0,F’(x
2
)=f(x
2
)=0. (Ⅱ)f
(m)
(x)同样为(Ⅰ)中类型的函数即可写成f
(m)
(x)=[*](α
k
coskx+β
k
sinkx),其中仅α
k
,β
k
(k=1,2,…,n)为常数,利用(Ⅰ)的结论,f
(m)
(x)在[0,2π)必有两个相异的零点.
解析
转载请注明原文地址:https://kaotiyun.com/show/RZk4777K
0
考研数学二
相关试题推荐
设D={(x,y)|x2+y2≤1},将二重积分化为定积分;
一质量为M、长为Z的均匀杆AB吸引着一质量为m的质点C,此质点C位于杆AB的中垂线上,且与AB的距离为a.试求:当质点C在杆AB的中垂线上从点C沿y轴移向无穷远处时,克服引力所做的功.
设3维向量组α1,α2线性无关,β1,β2线性无关.证明:存在非零3维向量ξ1,ξ2既可由α1,α2线性表出,也可由β1,β2线性表出;
设f(x)在x=0处存在2阶导数,且f(0)=0,f’(0)=0,f’’(0)≠0.则()
设f(x)在(一∞,+∞)上存在二阶导数,f’(0)0.证明:无论a>0,a
过坐标原点作曲线y=ex的切线,该切线与曲线y=ex以及x轴围成的向x轴负向无限伸展的平面图形记为D.求(I)D的面积A;(Ⅱ)D绕直线x=1所成的旋转体的体积V.
设f(x)在x=a处存在二阶导数,则=__________.
设曲线y=ax2(a>0,x≥0)与y=1-x2交于点A,过坐标原点O和点A的直线与曲线y=ax2围成一平面图形,问a为何值时,该图形绕x轴旋转一周所得的旋转体体积最大?最大体积是多少?
设极坐标系下的累次积分将I写成先对r后对θ的累次积分,则I=_________.
已知对于n阶方阵A,存在自然数k,使得Ak=0,试证明矩阵E-A可逆,并求出逆矩阵的表达式(E为n阶单位矩阵).
随机试题
抓斗挖泥船分层的厚度应根据()等因素确定。
A.肾B.膀胱C.肾、膀胱D.肾、三焦癃闭的病位在
城市用地的适用性评定主要分为()三大类。
目前,在土工合成材料中,广泛应用于防止路面裂缝的土工合成材料主要有()。
案例二背景:某施工单位以总价合同的形式与业主签订了一份施工合同,该项工程合同总价款为600万元,工期从2006年3月1日起开工至当年8月31日竣工。合同中关于工程价款的结算内容有以下几项:(1)业主在开工前7天支付施工单位预付款
属于职业健康与安全管理体系初始状态的评审内容的有()。
甲、乙、丙三位发起人,以募集方式设立股份有限公司。公司章程规定,公司注册资本为800万元。(一)第一部分资料(1)三位发起人共出资240万元,其中甲以货币出资120万元,持有公司15%的股份;乙以房屋出资80万元,持有公司10%的股份;
申请设立的公司通过了工商行政管理机关对其公司设立核准,则该公司的成立之日是()。
X染色体显性遗传病是由于位于X染色体上的显性致病基因引起的疾病,则以下遗传图谱中,最有可能显示X染色体显性遗传病的是:
原始社会的行为规则是()。
最新回复
(
0
)