首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是m×n矩阵,其m个行向量是齐次线性方程组Cx=0的基础解系,B是m阶可逆矩阵,证明BA的行向量也是齐次方程组Cx=0的基础解系.
已知A是m×n矩阵,其m个行向量是齐次线性方程组Cx=0的基础解系,B是m阶可逆矩阵,证明BA的行向量也是齐次方程组Cx=0的基础解系.
admin
2019-07-19
45
问题
已知A是m×n矩阵,其m个行向量是齐次线性方程组Cx=0的基础解系,B是m阶可逆矩阵,证明BA的行向量也是齐次方程组Cx=0的基础解系.
选项
答案
因为A的行向量是Cx=0的解,即CA
T
=0,那么C(BA)
T
=CA
T
B
T
=0B
T
=0. 可见BA的行向量是方程组Cx=0的解. 由于A的行向量是基础解系,所以A的行向量线性无关,于是m=r(A)=n一r(C). 又因B是可逆矩阵,r(BA)=r(A)=m=n—r(C),所以BA的行向量线性无关,其向量个数正好是n—r(C),从而是方程组Cx=0的基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/Rfc4777K
0
考研数学一
相关试题推荐
设事件A出现的概率为p=0.5,试利用切比雪夫不等式,估计在1000次独立重复试验中事件A出现的次数在450到550次之间的概率α.
设函数f(x)连续且恒大于零,其中Ωt={(x,y,z)|x2+y2+z2≤t2},Dt={(x,y)|x2+y2≤t2}。(Ⅰ)讨论F(t)在区间(0,+∞)内的单调性;(Ⅱ)证明当t>0时,F(t)>
设随机变量X服从正态分布N(μ,σ2),则随σ的增大,概率P{|X-μ|<σ}应该()
下列可表示由双纽线(x2+y2)2=x2-y2)围成平面区域的面积的是
一链条悬挂在一钉子上,启动时一端离钉子8m,另一端离钉子12m,试分别在以下两种情况下求链条滑离钉子所需要的时间:(1)不计钉子对链条的摩擦力;(2)若摩擦力为常力且其大小等于2m长的链条所受到的重力.
设函数f(x)=并记F(x)=∫0xf(t)dt(0≤x≤2),试求F(x)及∫f(x)dx.
设有齐次线性方程组Ax=0及Bx=0,其中A、B均为m×n矩阵,现有以下4个命题①若Ax=0的解均是Bx=0的解,则R(A)≥R(B);②若R(A)≥R(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则R(A)=R(B);④若R
随机地取两个正数x和y,这两个数中的每一个都不超过1,试求x与y之和不超过1,积不小于0.09的概率.
设随机变量X服从参数为λ>0的指数分布,且X的取值于区间[1,2]上的概率达到最大,试求λ的值.
证明二重极限不存在。
随机试题
(2005年第54题)风湿性心脏瓣膜病患者出现下列哪种征象应首先考虑有感染性心内膜炎的可能
玉液汤的适应证是增液汤的适应证是
饮水加氟适用于龋病高发区
建筑基坑支护采用重力式水泥土墙,当墙底为中密细砂,根据抗倾覆稳定条件确定其嵌固深度和墙体厚度时,需考虑的因素有()。
某热力管道工程,工程总造价5000万元,某施工企业通过招投标方式获得了该工程的施工任务,该施工企业为了保证预期利润目标的实现,责成项目经理部对工程项目成本制订完善的控制和管理措施和方法。施工项目经理部通过成本预测、成本计划、成本控制、成本核算、成本分析和成
全淹没灭火系统的干粉喷射时间不用大于()s。
2001年5月,小王与某公司签订了4年期的劳动合同,2003年6月,小王因出国留学主动提出解除劳动合同,某公司()支付小王经济补偿金。
某单位要在报名者中挑选2名献血者进行体检。最不可能被挑选上的是2007年以来已经献过血的人以及伤残人士。如果上述断定是真的,则以下哪项所言及的报名者最有可能被选上?()
以下关于SnifferPro的描述中,哪个是错误的?——
HackersAttackUSStateDepartmentComputersTheU.S.StateDepartmenthascloseditspublicemailsystemandwebsitesafter
最新回复
(
0
)