首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)为二阶可导的奇函数,且x<0时有f’’(x)>0,f’(x)<0,则当x>0时有( ).
设f(x)为二阶可导的奇函数,且x<0时有f’’(x)>0,f’(x)<0,则当x>0时有( ).
admin
2018-01-12
55
问题
设f(x)为二阶可导的奇函数,且x<0时有f
’’
(x)>0,f
’
(x)<0,则当x>0时有( ).
选项
A、f
’’
(x)<0,f
’
(x)<0
B、f
’’
(x)>0,f
’
(x)>0
C、f
’’
(x)>0,f(x)<0
D、f
’’
(x)<0,f
’
(x)>0
答案
A
解析
因为f(x)为二阶可导的奇函数,所以f(一x)=一f(x),f
’
(一x)=f
’
(x),f
’’
(一x)=一f
’’
(x),即f
’
(x)为偶函数,f
’’
(x)为奇函数,故由x<0时有f
’’
(x)>0,f
’
(x)<0,得当x>0时有f
’’
(x)<0,f
’
(x)<0,选(A).
转载请注明原文地址:https://kaotiyun.com/show/Rgr4777K
0
考研数学一
相关试题推荐
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示;
求幂级数的和函数.
设f(x)在区间[a,b]上满足a≤f(x)≤b,且有|f’(x)|≤q<1,令un=f(un-1)(n=1,2,…),u0∈[a,b],证明:级数绝对收敛.
设f(x)=a1ln(1+x)+a2ln(1+2x)+…+anln(1+nx),其中a1,a2,…,an为常数,且对一切x有|f(x)|≤|ex一1|.证明:|a1+2a2+…+nan|≤1.
求幂级数的收敛域与和函数,并求的和.
求(a为常数,0<|a|<e).
设向量α=[a1,a2……an]T,β=[b1,b2……bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求:A2;
以下4个结论:(1)教室中有r个学生,则他们的生日都不相同的概率是;(2)教室中有4个学生,则至少两个人的生日在同一个月的概率是;(3)将C,C,E,E,I,N,S共7个字母随机地排成一行,恰好排成英文单词SCIENCE的概率是;(4)袋中有编号为
某建筑工地打地基时,需用汽锤将桩打进土层.汽锤每次击打,都将克服土层对桩的阻力而作功.设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为k,k>0),汽锤第一次击打将桩打进地下am,根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作的
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.(Ⅰ)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示;(Ⅱ)设,求出可由两组向量同时表示的向量.
随机试题
当x→0时,与1-cosx比较,可得【】
患者咳嗽阵作半月,牵引胸胁作痛,咯痰黄稠带血,或咳鲜血,急躁易怒,大便秘,小便短赤,舌红苔薄黄,脉弦数。此病机是
特种设备的制造和安装、改造、重大维修过程,必须经特种设备检验检测机构按照()的要求进行监督检验,未经监督检验合格的不得出厂或者交付使用。
行业的成长能力主要是指行业核心技术的更新能力。()
债权人甲认为债务人乙怠于行使其债权给自己造成损害,欲提起代位权诉讼。根据合同法律制度的规定,下列各项债权中,不得提起代位权诉讼的有()。(2004年)
编制现金预算的依据包括()
某厂为当时的主要生产线招用一批合同制工,合同期为5年。合同履行三年后,厂方为适应市场竞争需要而转产,淘汰该生产线,另上新生产线。厂方按新生产线基本要求对工人进行考核,并对其中40名不合格者当即解除合同。这40人中,有5人表示愿意调换工作岗位,其余职工要求继
______主要生活在我国湖北、湖南、重庆等地。
设则=______。[img][/img]
已知对于n阶方阵A,存在自然数k,使得Ak=0,试证明矩阵E-A可逆,并求出逆矩阵的表达式(层为n阶单位矩阵).
最新回复
(
0
)