首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)为二阶可导的奇函数,且x<0时有f’’(x)>0,f’(x)<0,则当x>0时有( ).
设f(x)为二阶可导的奇函数,且x<0时有f’’(x)>0,f’(x)<0,则当x>0时有( ).
admin
2018-01-12
47
问题
设f(x)为二阶可导的奇函数,且x<0时有f
’’
(x)>0,f
’
(x)<0,则当x>0时有( ).
选项
A、f
’’
(x)<0,f
’
(x)<0
B、f
’’
(x)>0,f
’
(x)>0
C、f
’’
(x)>0,f(x)<0
D、f
’’
(x)<0,f
’
(x)>0
答案
A
解析
因为f(x)为二阶可导的奇函数,所以f(一x)=一f(x),f
’
(一x)=f
’
(x),f
’’
(一x)=一f
’’
(x),即f
’
(x)为偶函数,f
’’
(x)为奇函数,故由x<0时有f
’’
(x)>0,f
’
(x)<0,得当x>0时有f
’’
(x)<0,f
’
(x)<0,选(A).
转载请注明原文地址:https://kaotiyun.com/show/Rgr4777K
0
考研数学一
相关试题推荐
设A为m×n阶实矩阵,且r(A)=n.证明:ATA的特征值全大于零.
设u=u(x,y,z)连续可偏导,令若,证明;u仅为θ与φ的函数.
设L为曲线|x|+|y|=1的逆时针方向,计算
飞机以匀速v沿y轴正向飞行,当飞机行至O时被发现,随即从x轴上(x0,0)处发射一枚导弹向飞机飞去(x0>0),若导弹方向始终指向飞机,且速度大小为2v.导弹运行方程.
设f(x)在[0,1]上二阶可导,且f(0)=f’(0)=f(1)=f’(1)=0.证明:方程f"(x)一f(x)=0在(0,1)内有根.
假设有四张同样的卡片,其中三张上分别只印有a1,a2,a3,而另一张上同时印有α1,α2,α3.现在随意抽取一张卡片,令Ak={卡片上印有ak)。证明:事件A1,A2,A3两两独立但不相互独立.
设A是n阶矩阵,对于齐次线性方程组(I)Anx=0和(Ⅱ)An+1x=0,现有命题①(I)的解必是(II)的解;②(Ⅱ)的解必是(I)的解;③(I)的解不一定是(Ⅱ)的解;④(Ⅱ)的解不一定是(I)的解.其中,正确的是()
已知f(x1,x2,x3)=5x12+5x22+cx32一2x1x2+6x1x3—6x2x3的秩为2.试确定参数c及二次型对应矩阵的特征值,并问f(x1,x
在时刻t=0时开始计时,设事件A1,A2分别在时刻X,Y发生,X和Y是相互独立的随机变量,其概率密度分别为求A1先于A2发生的概率.
设P(A)>0,P(B)>0,将下列四个数:P(A),P(AB),P(A∪B),P(A)+P(B),按由小到大的顺序排列,用符号≤联系它们,并指出在什么情况下可能有等式成立.
随机试题
《西厢记》的作者是()
《赵威后问齐使》是先提出论点,然后展开议论的。()
据《国家环境保护“十二五”规划》,到2015年,重点区域内重点重金属污染物排放量比2007年降低(),非重点区域重点重金属污染物排放量不超过2007年水平。
近年来,危化品事故频发,因此,全国各地均展开了为期一年的危化品气液安全隐患排查工作,对“两重点一重大”的生产储存装置进行风险辨识分析。下列关于“两重点一重大”的说法中正确的是()。
搭接网络计划是可以表示计划中各项工作之间搭接关系的网络计划,其主要特点是计划图形简单,其中常用的搭接网络计划是()。
个人汽车贷款履约保证保险责任范围包括()。
某单位利用业余时间举行了3次义务劳动,总计有112人次参加,在参加义务劳动的人中,只参加1次、参加2次和3次全部参加的人数之比为5:4:1。问该单位共有多少人参加了义务劳动?
俄国画家列宾给托尔斯泰画了一幅耕作图,它长久地吸引了我,让我想象那杰出的老人,想象他与土地_____________的关系。也许这是一个伟大诗人与_____________写作者的最本质、最重要的区别。填入划横线部分最恰当的一项是:
设当x→0时,(1-cosx)ln(1+x2)是比xsinxn高阶的无穷小,而xsinxn是比ex2-1高阶的无穷小,则正整数n等于
Whatistherelationshipbetweenthetwospeakers?
最新回复
(
0
)